Механические характеристики алюминиевых сплавов

Механические характеристики алюминиевых сплавов

Механические свойства сплавов цветных металлов

Для обозначения состояний деформируемых сплавов приняты следующие обозначения: М — мягкий, отожжённый; П — полунагартованный; Н — нагартованный; Т — закалённый и естественно состаренный; Т1 — закалённый и искусственно состаренный на высокую прочность; Т2 — закалённый и искусственно состаренный по режиму, обеспечивающему по сравнению с режимом Т1 более высокие значения вязкости разрешения и сопротивления коррозии под напряжением; Т3 — аналогично Т2 с улучшенными свойствами. Буква «ч» в обозначении марки сплава указывает на повышенную чистоту сплава (по содержанию примесей). Деформируемые алюминиевые сплавы подразделяются на не упрочняемые и упрочняемые термической обработкой.

Механические свойства алюминиевых деформируемых сплавов

E = 70. 72 ГПа, G = 27. 28 ГПа, коэффициент Пуассона μ = 0,31. 0,33.

Система легированияСплав, состояниеПолуфабрикатПредел прочности σв, МПаПредел текучести σт, МПаТвёрдость HB, МПа
Al — MgАМг5МПруток, штамповка300160HB 650
Al — MgАМг6МПоковка300150
Al — MgАМг6НЛист400300
Al — CuД16 и Д16ПЛист440290
Al — CuД16 и Д16ППрофили420-500400-440

Механические свойства титановых сплавов

Титан имеет следующие преимущества по сравнению с другими конструкционными металлами: малый удельный вес, высокие механические свойства в широком диапазоне температур, отсутствие хладноломкости и хорошую коррозионную стойкость. Прочностные и пластические свойства нелегированного титана определяются содержанием в нём примесей кислорода, азота и в меньшей степени углерода, железа и кремния. Особо прочный титан имеет предел прочности 251 МПа, предел текучести 104 МПа, относительное удлинение 72% (на расчетной длине 13 мм) при поперечном сужении 86,2%. По структуре титановые сплавы можно разделить на четыре группы. 1) Сплавы с α-структурой, к которым относится технический титан и сплавы на его основе системы титан — алюминий. Кроме алюминия эти сплавы могут содержать нейтральные элементы, такие как, олово и цирконий. Достоинствами этих титановых сплавов является их отличная свариваемость плавлением, хорошая пластичность и высокая прочность при криогенных температурах. 2) Двухфазные сплавы с преобладанием α-структуры, содержащие примерно 2% элементов из группы β-стабилизаторов; данные сплавы имеют более высокую технологическую пластичность. 3) Двухфазные сплавы, содержащие более 2% β-стабилизаторов, обладают хорошей пластичностью после отжига или закалки и высокой прочностью после закалки и старения. Свариваются хуже, чем сплавы первых двух групп, после сварки необходим отжиг, который можно совместить с режимом старения. Эти титановые сплавы имеют более высокую прочность при комнатной и повышенных температурах, чем сплавы первых двух групп. 4) Сплавы с преобладанием β-структуры благодаря кубической решётке очень пластичны при комнатной температуре, мало уступая техническому титану. Другим преимуществом сплавов этой группы является возможность достижения чрезвычайно высокого уровня прочности путём термической обработки.

E = 110. 120 ГПа, G = 42. 45 ГПа, коэффициент Пуассона μ = 0,31. 0,34.

Система легированияСплавПолуфабрикатПредел прочности σв, МПаПредел текучести σт, МПа
ВТ1-199,04% TiСплав малой прочности после отжига.450-600380-500
Ti — AlВТ5Среднепрочный сплав после отжига.750-950650-700
Ti — Al — VВТ6Высокопрочный сплав после закалки и старения.11501050

Механический свойства медных сплавов

Медные сплавы разделяются на две основные группы: латуни и бронзы.
Латуни — сплавы, легированные цинком. Различают простые и специальные латуни. Простые латуни (двойные сплавы) маркируют буквой Л, за которой следует содержание меди в процентах. В обозначении специальных латуней после буквы Л следуют заглавные буквы легирующих элементов и содержание меди в процентах, затем через тире — процентное содержание каждого легирующего элемента.
Бронзы — сплавы, легированные различными элементами за исключением цинка. Маркируют бронзы буквой Бр, в остальном повторяется система маркировки латуней. Сплавы, в которых основным легирующим элементом является никель, именуются медно-никелевыми и имеют специальные названия. Деформируемые медные сплавы поставляются в мягком (отожженном и закаленном), полутвердом (обжатие 10-30%), твердом (обжатие 30-50%) и особо твердом (обжатие более 60%) состояниях.
Сплавы на основе олова или свинца — баббиты, маркируются буквой Б, за которой следует цифра, обозначающая содержание олова в сплаве.

Статьи

Алюминий — серебристо-белый легкий металл. Расположен в III группе Периодической системы элементов Д.И.Менделеева под номером 13; атомная масса алюминия — 26,98. Конфигурация внешней электронной оболочки 3s 2 3р; атомный радиус — 0,143 мм, ионный радиус А1 3+ (в скобках указаны координационные числа) 0,053 нм (4); 0,062 нм (5); 0,067 нм (6); энергия ионизации А1 -» А1 + -> А1 2+ —> А1 3+ — соответственно 5,984; 18,828; 28,44 эВ; сродство к электрону 0,5 эВ; электроотрицательность по Поллингу — 1,5; поперечное сечение захвата тепловых нейтронов — 215*10 -25 м 2 [3]. Алюминий имеет кубическую гранецентрированную кри­сталлическую решетку с параметрами: а = 0,40403 нм, z = 4, пространственная группа Fm3m. В природе существует один стабильный изотоп 27 А1.

Отличительные особенности алюминия — высокая электропроводимость, теплопроводность, коррозионная стойкость, малая плотность и отличная обрабатываемость давлением в холодном состоянии.

Физические свойства алюминия [2-6]

Механические свойства алюминия [4-6]

При охлаждении алюминия до температуры ниже 120 К его прочностные свойства в отличии от большинства металлов возрастают, а пластичность не изменяется (табл. 1.7).

Механические свойства алюминия различной чистоты

СостояниеСодержание Аl, %Предел прочности при растяжении σв2МПаПредел текучести при растяжении σ.00,2, МПаОтносительное удлинение δ, %Твердость по Бринеллю, НВ
Литой в землю99,996504513-15
Литой в землю99,5752920
Литой в землю99.0852025
Литой в кокиль99,0902525
Деформированный и отожженный99.090303025
Деформированный99,01401001232
Литой в землю98,0903512,528

Технологические свойства алюминия [6]

Коррозионные свойства алюминия [6].

Алюминий и его сплавы характеризуются высокой коррозионной стойкостью в атмосферных условиях как сельской местности, так и городских про­мышленных районов.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия и его сплавов. Алюми­ний практически не корродирует в дистиллированной и чистой пресной (естественной) воде даже при высоких температурах (до 180 °С). Действие пара на алюминий и его сплавы также незначи­тельно.

Вода, содержащая примеси щелочей, резко повышает скорость коррозии алюминия. При ком­натной температуре скорость коррозии алюминия в аэрированной воде содержащей 0,1% едкого натрия — 16 мм/год; 0,1% соляной кислоты — 1 мм/год и 1% соды — 4 мм/год.

Алюминий и его сплавы, не содержащие меди, достаточно стойки в естественной (не загряз­ненной) морской воде. Сернокислые соли магния, натрия, алюминия, а также гипосульфит прак­тически не действуют на технический алюминий. Скорость коррозии алюминия возрастает в при­сутствии в воде солей ртути, меди или ионов хлора, разрушающих защитную оксидную пленку на алюминии.

В концентрированной азотной кислоте при комнатной температуре алюминий и его сплавы ус­тойчивы, но быстро разрушаются в разбавленных кислотах.

Слабые растворы серной кислоты, концентрацией до 10%, при комнатной температуре незна­чительно влияют на технический алюминий, но с повышением концентрации и температуры ско­рость коррозии резко возрастает. В концентрированной серной кислоте алюминий практически устойчив.

Соляная кислота быстро разрушает алюминий и его сплавы, особенно с повышением темпера­туры. Такое же действие на алюминий оказывают растворы плавиковой и бромистоводородной кислот. Слабые растворы фосфорной (менее 1%), хромовой (до 10%) и борной (при всех концен­трациях) кислот на алюминий и его сплавы действуют незначительно.

Органические кислоты — уксусная, масляная, лимонная, винная, а также кислые (незагрязнен­ные) фруктовые соки, вино оказывают слабое действие на алюминий и его сплавы, за исключени­ем щавелевой и муравьиной кислот.

Алюминий и его сплавы быстро разрушаются в растворах едких щелочей, однако в растворах аммиака они довольно стойки, особенно сплавы, содержащие магний. Амины на них действуют также незначительно.

Следует отметить, что алюминий и однофазные сплавы на алюминиевой основе более стойки в коррозионном отношении, чем сплавы двухфазные и многофазные.

Влияние примесей на свойства алюминия. На коррозионные, физические, механические и технологические свойства алюминия оказывают значительное влияние примеси различных эле­ментов. Так, например, большинство примесей снижают электропроводность алюминия (рис. 1.1). Основные примеси в алюминии — железо и кремний. Железо снижает коррозионную стойкость, электропроводность и пластичность алюминия, но несколько повышает его прочность. Диаграмма состояния системы Al-Fe, приведенная на рис. 1.2, показывает, что железо незначительно раство­ряется в алюминии в твердом состоянии. При температуре эвтектики (655°С) растворимость желе­за достигает 0,052% и с понижением температуры граница твердого раствора а резко сдвигается в сторону алюминия. Железо в алюминии присутствует в виде самостоятельной фазы Al3Fe.

Железо — вредная примесь не только в алюминии, но и в сплавах алюминия с кремнием и магнием. Однако в жаропрочных алюминиевых сплавах железо (в сочетании с никелм) является полезной примесью.

Обычная примесь в алюминии — кремний. В сплавах на алюминиевой основе кремний наряду с медью, магнием, цинком, а также марганцем, никелем и хромом вводится в качестве основного компонента. Образующиеся при этом соединения CuAl2, Mg2Si, CuMgAl2 и др. являются эффек­тивными упрочнителями алюминиевых сплавов.

Из диаграммы состояния алюминий-кремний (рис. 1.3) видно, что при температуре эвтектики 577°С в алюминии растворяется до 1,65% кремния. С понижением температуры область твердого раствора α резко уменьшается.

Примеси кальция и других элементов, присутствующих в стандартных марках алюминия в не­значительном количестве, не имеют практического значения. Небольшие добавки церия, натрия и титана оказывают существенное влияние на структуру и свойства определенных алюминиевых сплавов.

Водород хорошо растворяется в алюминии и оказывает отрицательное влияние на его свойства, вызывая при литье пористость. Азот при высоких температурах вступает в реакцию с алюминием с образованием тугоплавкого соединения.

Токсикологические свойства алюминия [7]. В соответствии с ГОСТом по степени воздейст­вия на организм человека алюминиевую пыль относят к III классу опасности. Предельно-допустимая концентрация (ПДК) в воздухе пыли металлического алюминия и его оксидов состав­ляет 2 мг/м 3 .

При постоянном вдыхании пыли металлического алюминия и его оксида может возникнуть алюминоз легких. Рабочие, подвергшиеся воздействию пыли, должны проходить периодически флюорографическое обследование. У рабочих, занятых в производстве алюминия, часты катары верхних дыхательных путей (рипиты, фарингиты).

Наибольшую опасность для здоровья представляет процесс электролиза глинозема, протекаю­щий в расплавленном криолите (Na3AlF6) при температуре 950 °С. Электролиз расплавленных со­лей может сопровождаться выбросами большого количества фторидной пыли, фторсодержащих газов, а также паров и частиц битума-компонента анодной массы. Рабочим, занятым на этой опе­рации, также грозят ожоги кожи и глаз при попадании на них расплавленного металла. Во избежании несчастных случаев электролизные ванны необходимо надежно изолировать, рабочие должны иметь средства индивидуальной защиты:, противопылевые маски, очки. перчатки, фартуки, сапоги и т.д. В электролизных цехах должен регулярно проводиться контроль за содержанием пыли в воздухе.

ПДК алюминия и его оксида по ГОСТу и нормативам США приведены ниже:

* Предел кратковременного влияния, т.е. максимальная концентрация, воздействию которой человек может подвергаться не более 15 минут подряд при условии, что в течении дня допускается не более 4-х таких воздействий с промежутками не менее 60 минут.

** Величина порогового предела концентрации вещества, устанавливаемая американской конференцией государственных гигиенистов и определенная для 8-часового рабочего дня и 40-часовой рабочей недели.

Механические свойства алюминия

Механические свойства алюминия, как и других материалов – это свойства, которые связаны с упругой и неупругой реакцией материала на приложение к нему нагрузки, в том числе, зависимость между напряжениями и деформациями. Примерами механических свойств являются:

  • модуль упругости (при растяжении, при сжатии, при сдвиге)
  • предел прочности (при растяжении, при сжатии, при сдвиге)
  • предел текучести
  • предел усталости
  • удлинение (относительное) при разрыве
  • твердость.

Механические свойства часто ошибочно относят к физическими свойствам.

Механические свойства материалов, в том числе, алюминия и его сплавов, которые получают путем испытания материала на растяжение, например, модуль упругости при растяжении, прочность при растяжении, предел текучести при растяжении и относительное удлинение называют механическими свойствами при растяжении.

Модуль упругости

Модуль упругости, который часто называют модулем Юнга – это отношение напряжения, которое приложено к материалу, к соответствующей деформации в том интервале, когда они являются прямо пропорциональными друг к другу.

Различают три типа напряжений и соответственно три типа модулей упругости для любого материала, в том числе для алюминия:

  • модуль упругости при растяжении
  • модуль упругости при сжатии
  • модуль упругости при сдвиге (сдвиговый модуль упругости).

Таблица – Модули упругости при растяжении алюминия и других металлов [1]

Рисунок 1 – Кривые растяжения алюминия и низкоуглеродистой стали [4]

Рисунок 2 – Влияние легирующих элементов в алюминиевых сплавах на их плотность т модуль упругости [4]

Прочность при растяжении

Отношение максимальной нагрузки перед разрушением образца при испытании его на растяжение на исходную площадь поперечного сечения образца. Также применяются термины «предел прочности при растяжении» и «временное сопротивление разрыву».


Рисунок 3 – Кривые растяжения алюминия в сравнении и различными металлами и сплавами [4]

Предел текучести

Напряжение, которое необходимо для достижения заданной малой пластической деформации в алюминии или другом материале при одноосной растягивающей или сжимающей нагрузке.

Если пластическая деформация под воздействием растягивающей нагрузки задается как 0,2 %, то применяется термин «предел текучести 0,2 %» (Rp0,2).

Рисунок 4 – Типичная диаграмма напряжение-деформация
для алюминиевых сплавов

Удлинение (при разрыве)

Часто называется «относительным удлинением». Увеличение расстояния между двумя метками на испытательном образце, которое возникает в результате деформирования образца при растяжении до разрыва между этими метками.

Величина удлинения зависит от размеров поперечного сечения образца. Например, величина удлинения, которая получена при испытании алюминиевого листового образца будет ниже для тонкого листа, чем для толстого листа. Тоже самое относится и к прессованным алюминиевым профилям.


Рисунок 5 – Влияние легирующих элементов на прочностные свойства и относительное удлинение [4]

Удлинение А

Удлинение в процентах после разрыва образца при исходном расстоянии между метками 5,65 · √ S, где S – исходная площадь поперечного сечения испытательного образца. Устаревшее обозначение этой величины А5 в настоящее время не применяется. Аналогичная величина в русскоязычных документах обозначается δ5.

Легко проверить, что для круглых образцов это расстояние между исходными метками вычисляется как 5·d.

Удлинение А50мм

Удлинение в процентах после разрыва образца по отношению к исходной длине между метками 50 мм и постоянной исходной ширине испытательного образца (обычно 12,5 мм). В США применяется расстояние между метками в 2 дюйма, то есть 50,8 мм.

Сдвиговая прочность

Максимальное удельное напряжение, то есть максимальная нагрузка, разделенная на исходную площадь поперечного сечения, которую выдерживает материал при испытании на сдвиг. Сдвиговая прочность обычно составляет около 60 % от прочности при растяжении.

Сдвиговая прочность является важной характеристикой качества заклепок, в том числе, алюминиевых.


Рисунок 6 – Прочность на сжатие, прочность на сдвиг, несущая прочность и
твердость различных алюминиевых сплавов [4]

Коэффициент Пуассона

Отношение между продольным удлинением и поперечным сокращением сечения при одноосном испытании. Для алюминия и всех алюминиевых сплавов во всех состояниях коэффициент Пуассона обычно составляет 0,33 [2].

Твердость

Сопротивление металла пластическому деформации, обычно измеряемое путем отпечатка.

Твердость Бринелля (HB)

Сопротивление проникновению сферического индентора при стандартизированных условиях.

Для алюминия и алюминиевых сплавов твердость НВ приблизительно равна 0,3·Rm, где Rm – предел прочности при растяжении, выраженный в МПа [2].

Если применяется индентор из карбида вольфрама, то применяется обозначение HBW.

Твердость Викерса (HV)

Сопротивление проникновению алмазного индентора в виде квадратной пирамиды при стандартизированных условиях. Твердость HV приблизительно равна 1,10·HB [2].

Усталость

Тенденция металла разрушаться при длительных циклическом напряжении, которое значительно ниже предела прочности при растяжении.


Рисунок 7 – Различие в усталостном поведении низкоуглеродистой стали иалюминиевых сплавов [3]

Усталостная прочность

Максимальная амплитуда напряжения, которую может выдерживать изделие при заданном количестве циклов нагружения. Обычно выражается как амплитуда напряжения, которая дает 50%-ную вероятность разрушения после заданного количества циклов нагружения [2].

Усталостная выносливость

Предельное напряжение, ниже которого материал будет выдерживать заданного количество циклов напряжения [2].

Механические свойства алюминия и алюминиевых сплавов

В таблицах ниже [3] представлены типичные механические свойства алюминия и алюминиевых сплавов:

  • предел прочности при растяжении
  • предел текучести при растяжении
  • удлинение при растяжении
  • усталостная выносливость
  • твердость
  • модуль упругости

Механические свойства представлены отдельно:

  • для алюминиевых сплавов, упрочняемых нагартовкой.
  • для алюминиевых сплавов, упрочняемые термической обработкой.

Эти механические свойства – типичные. Это означает, что они годятся только для сравнительных целей, а не для инженерных расчетов. В большинстве случаев они являются средними значениями для различных размеров изделий, их форм и методов изготовления.

  • ← Previous Отчет по всемирной Выставке АЛЮМИНИЙ 2018 в Дюссельдорфе
  • Что такое алюминиевая продукция Next → />

Читайте также  Как пользоваться старой стиральной машиной
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]