Какой трансформатор называют повышающим и какой ...

Какой трансформатор называют повышающим и какой …

Что такое трансформатор: устройство, принцип работы, схема и назначение

Что такое трансформатор: устройство, принцип работы, схема и назначение

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Какой трансформатор называют повышающим

повышающий трансформатор

Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).

При К>1 трансформатор является понижающим, а при К<1 — повышающим трансформатором.

U1/U2 ≈ E1/E2 = N1/N2 = К

где: U1, U2 — напряжение на первичной и вторичной обмотке; E1, E2-мгновенные значения ЭДС; N1, N2 — количество витков первичной и вторичной обмотки

повышающий трансформатор

повышающий трансформатор схема

Применение повышающих трансформаторов

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Повышающий тороидальный трансформатор

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.

Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.

Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:

  • во-первых, экономия материалов на производстве,
  • во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
  • в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор.

Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.

Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.

Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Для чего около электростанций устанавливают повышающий напряжение трансформатор?

Любой проводник имеет свое сопротивление и поэтому в ЛЭП неизбежно возникают тепловые потери на нагрев проводника. Величина нагрева пропорциональна квадрату тока в цепи, по этому повышая напряжение до сотен киловольт, мы, согласно закону Ома понижаем ток, а значит и снижает тепловые потери и размер проводников ЛЭП, экономия материалов и стоимости.

Какой трансформатор называют повышающим и какой …

Повышающие и понижающие трансформаторы

До сих пор мы с вами рассматривали трансформаторы, у которых первичная и вторичная обмотки имели одинаковую индуктивность, давая примерно одинаковые уровни напряжения и тока в обоих цепях. Однако, равенство напряжений и токов между первичной и вторичной обмотками трансформатора не является нормой для всех трансформаторов. Если индуктивности двух обмоток имеют разную величину, происходит нечто интересное:

Обратите внимание на то, что вторичное напряжение примерно в десять раз меньше первичного (0,9962 вольт против 10 вольт), а вторичный ток примерно в десять раз превышает первичный (0,9962 мА против 0,09975 мА). В этом SPICE моделировании описано устройство, которое в десять раз понижает напряжение и в десять раз повышает ток.

Трансформатор — это очень полезное устройство. С его помощью мы легко можем повысить или понизить напряжение и ток в цепях переменного тока. Появление трансформаторов сделало практической реальностью передачу электроэнергии на большие расстояния. Трансформаторы позволяют уменьшить потери на проводах линий электропередач (соединяющих генерирующие станции с нагрузками) путем повышения переменного напряжения и понижения переменного тока. На обоих концах (как на генераторе, так и на нагрузках) трансформаторы понижают уровни напряжения до более безопасных значений и снижают стоимость применяемого оборудования. Трансформатор, который на выходе (во вторичной обмотке) вырабатывает более высокое напряжение, чем приложено на входе (к первичной обмотке), называется повышающим трансформатором (его вторичная обмотка имеет больше витков, чем первичная). И наоборот, понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем подается на его вход, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.

Посмотрите еще раз на фотографию, показанную в предыдущей статье:

ransformers16

На поперечном разрезе трансформатора хорошо видно первичную и вторичную обмотки.

Это понижающий трансформатор, о чем свидетельствует большое количество витков первичной обмотки и малое число витков вторичной обмотки. Он преобразует высокое напряжение и маленький ток в низкое напряжение и большой ток. Благодаря большому току вторичной обмотки, в ней используется провод большого сечения. Первичная обмотка, ток в которой имеет небольшую величину, может быть выполнена из провода меньшего сечения.

Любой из рассмотренных типов трансформаторов можно использовать по противоположному назначению (подключить вторичную обмотку к источнику переменного напряжения, а первичную обмотку — к нагрузке). В этом случае трансформатор будет выполнять противоположную функцию: понижающий трансформатор будет функционировать как повышающий, и наоборот. Однако, для эффективной работы трансформатора индуктивности каждой из его обмоток должны быть спроектированы под конкретные рабочие диапазоны напряжения и тока (этот вопрос рассматривался в предыдущей статье). Поэтому, при использовании трансформатора по «противоположному» назначению, напряжения и токи его обмоток должны оставаться в исходных конструктивных параметрах. Только в этом случае трансформатор будет эффективен (и не будет поврежден чрезмерным напряжением или током!).

Трансформаторы часто имеют такую конструкцию, что не очевидно, какие провода принадлежат к первичной обмотке, а какие к вторичной. Во избежание путаницы, на многих трансформаторах (в основном импортного производства) используется обозначение «Н» для высоковольтной обмотки (первичная обмотка в понижающем трансформаторе, вторичная обмотка в повышающем трансформаторе), и обозначение «X» для низковольтной обмотки. Поэтому простой силовой трансформатор будет иметь провода с надписью «H1», «H2», «X1» и «X2».

Если вы вспомните, что мощность равна произведению напряжения и тока, то поймете почему напряжение и ток всегда движутся в «противоположных направлениях» (если напряжение увеличивается, то ток уменьшается, и наоборот). Вы так же поймете, что трансформаторы не могут производить энергию, они могут только преобразовывать ее. Любое устройство, которое могло бы произвести больше энергии, чем потребило, нарушило бы Закон сохранения энергии (энергия не может быть создана или уничтожена, она может быть только преобразована).

Практическая значимость вышесказанного становится более очевидной, когда рассматривается альтернатива: до появления эффективных трансформаторов, преобразование уровней напряжения и тока могло быть достигнуто только за счет использования установок, содержащих моторы и генераторы:

ransformers21

Установка мотор/генератор иллюстрирует основной принцип трансформатора

В этой установке мотор механически соединен с генератором. Генератор предназначен для получения желаемых уровней напряжения и тока за счет скорости вращения мотора. В то время, как и мотор и генератор являются достаточно эффективными устройствами, использование их в связке не обладает достаточной эффективностью, так что общий КПД установки находится в диапазоне 90% или менее. Кроме того, движущиеся части данных установок подвержены трению и механическому износу, а это, в свою очередь, влияет как на срок службы, так и на производительность. Трансформаторы же, с другой стороны, способны преобразовывать переменное напряжение и ток с очень высокой эффективностью без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

Справедливости ради стоит сказать, что установки мотор/генератор не обязательно являются устаревшими в сравнении с трансформаторами во всех сферах применения. Если трансформаторы явно превосходят моторы/генераторы в преобразовании переменного напряжения и тока, то они не могут преобразовать одну частоту переменного тока в другую, а также преобразовать (сами по себе) постоянное напряжение в переменное или наоборот. Установки мотор/генератор могут все это делать относительно просто, хотя и с некоторыми ограничениями эффективности, описанными выше. Эти установки также обладают уникальным свойством сохранения кинетической энергии: то есть, если по какой-либо причине источник питания мотора мгновенно отключается, его угловой момент (инерция вращательного движения) будет еще некоторое время поддерживать вращение генератора, изолируя тем самым нагрузку (питаемую генератором) от «сбоев» в основной энергосистеме.

При внимательном просмотре цифр в SPICE анализе вы должны увидеть соотношение между коэффициентом трансформации и двумя индуктивностями. Обратите внимание на то, что первичная обмотка (l1) имеет в 100 раз большую индуктивность, чем вторичная (10000 Гн против 100 Гн), и что напряжение было понижено с 10 В до 1 В (в 10 раз). Обмотка с большей индуктивностью имеет более высокое напряжение и меньший ток. Поскольку обе обмотки трансформатора намотаны вокруг одного и того же сердечника (для наиболее эффективной магнитной связи между ними), параметры, влияющие на их индуктивность равны, за исключением количества витков в каждой из обмоток. Если мы еще раз взглянем на формулу индуктивности, то увидим, что индуктивность катушки пропорциональна квадрату числа ее витков:

ransformers22

Таким образом, должно быть очевидно, что две обмотки трансформатора в вышеприведенном SPICE моделировании при соотношении их индуктивностей 100 : 1 должны иметь соотношение витков провода 10 : 1, так как 10 в квадрате равно 100. Поскольку соотношение витков соответствует соотношению между первичным и вторичным напряжениями и токами (10 : 1), мы можем сказать, что коэффициент трансформации напряжения и тока равен соотношению витков провода между первичной и вторичной обмотками.

ransformers23

Повышающее / понижающее действие соотношения витков обмоток в трансформаторе аналогично соотношениям шестеренок в механических редукторных системах, которые преобразуют значения скорости и крутящего момента во многом таким же образом:

ransformers24

Повышающие и понижающие трансформаторы, применяющиеся для распределения электроэнергии, могут иметь гигантские размеры (сопоставимые с размером дома). На следующей фотографии показан трансформатор подстанции высотой около четырех метров:

Читайте также  Определение числа витков в обмотках трансформатора
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]