Как замерить контур заземления мегаомметром

Как замерить контур заземления мегаомметром

Как измерить заземление мультиметром в системе TT

Сопротивление контура заземления в частном доме — это важный показатель, влияющий на электробезопасность при эксплуатации электроприборов. В данном обзоре будет приведена подробная методика того, как измерить заземление мультиметром в системе TT.

Измерение заземления — основы

Землей называется условная точка цепи, электрический потенциал которой считается равным нулю. Такое название этой точки связано с соединением одного из проводников электрических генераторов с землей при помощи зарытого в него проводника. Здесь конечно можно запутаться, поэтому попробуем разобраться. Если заземлить нейтраль трансформатора, то контур заземления вкопанный в землю выступает в роли резистора с определенным сопротивлением. Другой контур, например дома, — это второй резистор. Если замкнуть цепь фаза нейтраль через эти резисторы, то получится цепь из последовательно соединенных резисторов. При этом с учетом сопротивлений каждого резистора будет происходить падение напряжения на определенном участке цепи. Зная это правило последовательного соединения при помощи закона Ома можно с легкостью рассчитать сопротивление контура заземления.

Для наглядности приведем пример. На улице стоит понижающий распределительный трансформатор. От него по столбам идут четыре провода — три фазных и одна общая нейтраль (PEN проводник). Это нейтраль на трансформаторе заземлена.

На данном этапе рассмотрения стоит отметить важное — если основной является система TN (в частности TN-C-S), то ни в коем случае нельзя, во-первых, делать заземление по системе TT (об этом в следующих публикациях), во-вторых, измерять контур заземления методом, который будет рассматриваться. Также стоит предупредить об опасности шагового напряжения (об этом тоже будет рассмотрено отдельной темой). Поэтому, если не уверены в качестве заземления и в своих навыках работы с электричеством, лучше воздержитесь от таких измерений.

Продолжим. Мы определились — если условия электробезопасности в системе TN не могут быть обеспечены, то можно выполнить заземление в доме по системе TT (ПУЭ-7, 1.7.59). Чем ниже сопротивление контура заземления, тем лучше. В идеале значение должно быть в пределах 4 Ом. Разберемся, как работает заземление в доме, и какая взаимосвязь имеется с глухозаземленной нейтралью трансформатора.

как измерить заземление - основы

На рисунке выше схематически показан трансформатор с заземленной нейтралью. Сопротивление заземлителя примем равным 2 Ом. Смоделирован пробой фазы на заземленный корпус в доме с системой заземления TT. Фаза пошла в землю через контур заземления 4 Ом, далее к генератору через землю и заземление самого генератора 2 Ом. Земля это проводник, но не идеальный. Заземлением мы улучшаем проводимость, но на пути все равно имеется сопротивление — 4 Ом и 2 Ом. Другими словами, если бы сопротивления были ничтожно малыми и стремились к нулю, то данная цепь от отдельного заземлителя к заземлителю трансформатора выступила бы в роли полноценного нулевого рабочего проводника, замкнувшего фазу. Но так как сопротивление цепи заземления все же имеется, то при замыкании фазы на землю, ток короткого замыкания будет напрямую зависеть от его значения.

Для наглядности рассмотрим два варианта:

Сопротивление заземления TT 4 ОмСопротивление заземления TT 40 Ом
как измерить заземление - основы
При сопротивлении контура заземления дома 4 Ом ток короткого замыкания 36,6 А. При 40 Ом — 5,2 А. То есть, если в первом случае правильно подобранный автоматический выключатель сработает, то во втором нет. Но если будет стоять УЗО, а оно в системе TT должно стоять обязательно, то сработает защита как при сопротивлении 4 Ом, так и при 40 Ом контура заземления.

Измерение заземления мультиметром — пример расчета

Мы знаем, что измерение сопротивления контура заземление выполняется при помощи специализированного измерительного оборудования. Но как быть, если под рукой только обычный мультиметр? Им тоже можно измерить относительно точно. Единственный нюанс — это небезопасный способ, и при измерении мы получим общее сопротивление контура заземления и заземления нейтрали на распределительном трансформаторе. Последнее значение можно принять равным 2 Ом (плюс-минус отклонение будет незначительным).

Измеряться будет только напряжение (вольтметром) и сопротивление (амперметром). Полученные данные нужны для расчета сопротивления по правилам последовательного соединения резисторов.

Если рассмотреть схему замыкания фазы на контур заземления, то очевидно, что в таком виде измерить и сравнить ничего не получится. Ведь заземление на схеме — это резистор с двумя выводами. А в реальности второй вывод находится глубоко в земле — и физически произвести замер разности потенциалов между выводами нельзя. Поэтому нужно добавить в схему еще одну нагрузку (резистор) — например включить чайник (мощность 2 кВт, сопротивление 27 Ом) через фазу и землю. В этом случае измеряется падение напряжение через чайник и сила тока в цепи.

измерение заземления мультиметром - пример расчета

Получаем напряжение на участке резистора 27 Ом (чайник): U(чайник) = 180 В.

Соответственно напряжение на участке, объединяющим два заземления (дома и нейтрали) равняется: U(заземление 2+4 Ом) = 220 — 180 = 40 В.
По отдельности возможности измерить падение напряжения на двух участках с заземлением нет возможности. В программе Electronics Workbench это можно сделать. И для наглядности покажем напряжение на каждом участке:

измерение заземления мультиметром - пример расчета

Первое правило последовательного соединения заключается в том, что протекающие по всем проводникам токи равны между собой. Сила тока в рассматриваемой цепи I = 6,667 А.

Теперь зная закон Ома можно легко найти сопротивление на участке заземление дома — заземление нейтрали:
R=U / I = 40 / 6,667 = 5,99970001499925 Ом = 6 Ом.

Так как мы взяли за сопротивление глухозаземленной нейтрали значение 2 Ом, то сопротивление заземления дома = 6 — 2 = 4 Ом.

Как видно, зная сопротивление глухозаземленной нейтрали трансформатора можно практически точно рассчитать сопротивление вашего контура заземления.

Видео — как измерить заземление мультиметром

И если с моделированием и расчетами заземления в программе все понятно, то стоит уделить особое внимание подготовке и организации замеров контура заземления непосредственно на конкретном объекте.

В первую очередь нужен фазный проводник. Записаться к нему можно либо с близлежащей розетки, либо протянуть отдельный провод от щита учета. В обоих случаях конечная точка — это розетка, в которой нужно определить фазу индикаторной отверткой и пометить.

Далее понадобится вилка, в который заведен один провод и соединен с одним штыревым контактом. Здесь тоже нужно отметить используемый контакт. Данный провод подключается к контактам блока розеток (минимум две) и на пути разрывается автоматическим выключателем. Второй провод, соединенный с контуром заземления, также заводится в блок розеток и подключается к другим контактам.

Таким образом можно относительно безопасно измерить разность потенциалов на участке подключенного чайника. Для этого вставляем вилку в розетку так, чтобы задействованный контакт вилки соединился с фазой в розетке. Подключаем чайник к блоку розеток, проверяем, находится ли автомат во включенном состоянии, и включаем нагрузку чайника. Предварительно нужно подготовить мультиметр для измерения переменного напряжения. После включения чайника в сеть фаза-заземление измерение проводится щупами через контакты свободной розетки в блоке. Выключаем чайник и записываем получившийся результат напряжения U(чайник).

При измерении силы тока последовательность такая же, только автоматический выключатель должен быть выключен (чайник включен, но не работает). Мультиметр переводится в режим измерения переменного тока. Замер производится путем замыкания цепи щупами через контакты автоматического выключателя. Это не безопасное измерение, поэтому использовать дешевые мультиметры с хлипкими щупами не рекомендуется. Для более безопасного измерения в цепи нужно заменить чайник на менее мощный прибор с сопротивлением порядка 200 Ом. Соответственно ток в цепи не будет превышать 1 А, и вынос потенциала через заземление уменьшится. Замерив силу тока в цепи, записываем результат I.

Осталось только измерить напряжение в доме U (≈ 230 В). Зная три полученных значения, сопротивление контура заземления определяется по следующей формуле: R = (U — U(чайник)) / I — 2 (Ом). 2 Ом — сопротивление заземление нейтрали трансформатора.

Измерение сопротивления контура защитного заземления

Защитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением.

Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1.

Описание измерителя заземления М416

Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (?). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В.

Измерение сопротивления контура защитного заземления

Измеритель сопротивления заземления Ф4103-М1

Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов).

Измеритель Ф4103 является безопасным.

При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения).

Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима — не более 10 секунд. Время установления показаний в положении «ИЗМ I» — не более 6 секунд, в положении «ИЗМII» — не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ — 7250 часов. Средний срок службы — 10 лет Условия эксплуатации — от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг , не более – 2,2.

Измеритель сопротивления заземления Ф4103-М1

Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме «ИЗМI». Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки.

Порядок проведения измерения сопротивления контура защитного заземления

1. Установить элементы питания в измеритель заземления.

2. Установить переключатель в положение «Контроль 5 ?», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы.

3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1.

4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода.

5. Переключатель установить в положение «Х1».

6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю.

Измерение сопротивления мегаомметром

Измерительные приборы при работе с электрическими сетями играют важную роль для обеспечения безопасности обслуживающего персонала, а также для осуществления контроля состояния электроприборов и схем их подключения. Это же касается и прибора, именуемого мегаомметр (ранее «мегомметр»), предназначенного для измерения сопротивлений, имеющих очень высокие значения. Данная публикация содержит информацию о том, что представляет собой мегаомметр, сферы применения, порядок работы с ним. В статье расскажем про измерение сопротивления мегаомметром, рассмотрим пошаговую инструкцию.

Внешний вид прибора с динамо машиной, приводимой в действие вручную

Назначение прибора, конструкция, принцип работы

Название прибора говорит само за себя: «мега» — означает 10 6 или 1 млн., «омметр» — измерение сопротивления. Таким образом, становится ясно, что с помощью устройства доступны измерения сопротивлений в миллионы Ом или тысячи кОм. Где и кому могут понадобиться такие показатели? В основном это изоляция и все, что с ней связано, то есть средства, исключающие действие электротока там, где это не нужно по электрической схеме или недопустимо с точки зрения безопасности.

Кабеля, передающие электроэнергию, выводные трансформаторные изоляторы, обмотки электродвигателей приборов, машин и механизмов, должны обладать надежной изоляцией, способной исключить контакт проводников между собой, а также с корпусом устройства, предотвратить короткое замыкание или поражение человека электротоком. Соответственно значение сопротивления изоляционных средств должно иметь достаточно высокое значение. Для его измерения предназначен мегаомметр. С его помощью можно установить, что оборудование нуждается в замене, ремонте или временном отстранении от работы и просушке.

Внутреннее строение измерительного устройства

Основными составными частями прибора являются:

  • генератор напряжения (постоянного тока);
  • измерительный блок, демонстрирующий показания;
  • переключатель диапазонов измерений (кОм-МОм), дающий возможность изменять выходное напряжение за счет включения различных встроенных резисторных схем;
  • резисторы – сопротивления, ограничивающие протекающий ток.

Внутренний генератор в приборах старого образца работает от ручного привода за счет динамо машины. Современные устройства действуют от батарей. Стрелочные (аналоговые) аппараты отображают показания на шкале за счет двух рамок: одной — рабочей и второй – противодействующей. Измерительный блок электронных мегаомметров выдает значения на табло в цифровом виде.

Внешний вид цифрового электронного мегаомметра для диагностики изоляции

Клеммы для подключения щупов вместо обозначений «Л» и «З», могут иметь маркировку “Rx” и “-”. Читайте также статью: → «Способы проверки напряжения в розетке при помощи различных приборов ».

Принцип работы прибора

Действие устройства основано на законе Ома, известном из школьного курса физики, где сила тока находится в прямой зависимости от напряжения и сопротивления, что отображается формулой I = U/R.

Напряжение генерируется самим прибором. Измерительный блок, по сути, является амперметром, который фиксирует значение протекающего по цепи тока, но так как напряжение, подаваемое генератором заранее известно, то деления шкалы измерений рассчитаны и размечены под кило- и мегаомы.

Проверка сопротивления изоляции производится при отключенной электроэнергии, но создаваемое прибором высокое напряжение может накапливаться (например, на конденсаторах) и собираться в опасные заряды, способные привести к поражению человека электрическим током.

Осуществление измерений прибором

Работы производятся работниками (не менее двух), имеющими специальное образование и допуск по технике безопасности. Учитывая наличие высокого напряжения, контакты с диагностируемыми объектами производятся только специальными щупами с изолирующим покрытием. Читайте также статью: → «Измерение сопротивления изоляции электропроводки ».

Процедура измерений производится в два этапа:

  1. Подготовительный – проверка прибора, его работоспособности, подготовка места работы
  2. Рабочий – производство определенных действий по замеру сопротивления изоляции.

Перед началом работы измеряемый участок обесточивается, принимаются меры по предупреждению несанкционированной подачи электроэнергии.

Подготовка к проведению измерений, проверка мегаомметра

В проверяемой цепи могут присутствовать полупроводниковые и микропроцессорные элементы, которые не в состоянии выдержать подаваемое во время проверки высокое постоянное напряжение. Поэтому в период подготовки такие составляющие части схемы должны быть временно удалены или блокированы перемычками и шунтами.

Практическая рекомендация:если используется измерительное устройство старого типа, необходимо приготовить горизонтальную поверхность, на которую прибор будет установлен для уменьшения искажений и получения более точных результатов.

Проверка мегаомметра производится следующим образом:

  • аппарат, провода и щупы осматриваются на предмет наличия видимых повреждений (сколов, трещин);
  • провода подключаются к клеммам, щупы замыкаются между собой, от генератора подается напряжение – результат «0» свидетельствует об исправности;
  • при подаче напряжения и разведенных щупах исправный прибор должен показать «∞». Рабочее место и прибор готовы к проведению измерений.

Диагностирование состояния изоляции (пошаговая инструкция)

При проведении контроля сопротивления изоляции между проводником и корпусом (землей) используются только щупы. При испытаниях токоведущей жилы кабеля, провод от клеммы «Э» подключается к экрану кабеля. Это позволит компенсировать токи утечки.

Для измерения сопротивления обмоток, которое проводится перед их испытанием высоким напряжением, применяют мегаомметры с соответствующим номинальным напряжением, либо выставляют регулировку прибора (если она имеется) на нужную величину:

№ п/пНоминальное напряжение обмотки, ВНоминальное напряжение мегаомметра, В
1.500 (660)500
2.До 30001000
3.3000 и более2500 и более

Непосредственно измерение производится в следующем порядке:

  1. На время подключения прибора, накладывается переносное заземление, щупы устанавливаются на проверяемые объекты, переносное заземление снимается (установка и снятие заземления производится перед каждым замером во избежание поражения током и предупреждения погрешностей на приборе)
  2. Проверяется изоляция между всеми фазами, а также относительно REN проводника. Ручка генератора при каждой проверке должна вращаться со скоростью 120 об/мин в течение 60 сек, а у электронного аппарата подача напряжения происходит через нажатие кнопки на 30 сек. Между замерами нужно выдерживать паузу – 2 мин. При нормальном состоянии изоляции, стрелка устройства будет уходить в сторону наибольшего значения, ближе к «∞», а в противном случае – приближаться к «0».
  1. При проверке однофазных цепей, необходимо отсоединить нулевой провод, отключить все потребители и УЗО. Для проверки бытовых электрических сетей напряжение прибора выставляется на 500 Вольт
  2. Замеры производятся поочередно между “N”, “L” и “RE”
  3. После окончания измерений, объект испытания необходимо кратковременно замкнуть на землю, для удаления возможного остаточного напряжения, а мегаомметр разрядить, соединив щупы между собой.

Практическая рекомендация: во время работы с мегаомметром, щупы нужно держать только выше ограничительных колец, а все манипуляции с их переустановкой, наложением заземлений и другие осуществлять в диэлектрических перчатках.

В случае обнаружения неисправности, поврежденный участок разбирается на элементы для выявления и устранения нарушения. Перед возобновлением электроснабжения нужно устранить все внесенные в цепь изменения, удалить перемычки, шунты, подключить защитные устройства.

Обзор моделей мегаомметров и их производителей

Современный рынок измерительной техники предлагает широкий выбор аппаратов от разных торговых марок. Через интернет магазины можно приобрести аналоговые и цифровые мегаомметры в электродинамическом и электронном исполнении. Разные модели предназначенные для производства измерений в различных диапазонах отличаются не только рабочими параметрами, но и габаритами и ценовыми значениями. Охватить в одной публикации все модели и их производителей невозможно, поэтому для ориентации в разнообразии изделий и ценах на них, в качестве примера приводится продукция отечественного и зарубежного производства:

СтранаНазвание прибораМодельЦена, руб.
РоссияПрофКип ЭС202/1гЭлектродинамический8 000
БеларусьЕ6-26Электронный цифровой71 000
УкраинаЭС0210/3Электродинамический14 000
ПольшаSonel MIC-2505Электронный цифровой60 000
КитайUni-T UT-513Электронный цифровой16 000

Приведенные значения стоимости являются усредненными и не могут стать основанием для оформления заказов и составления смет для закупок. При выборе измерительного устройства нельзя ориентироваться только на его стоимость или компактные размеры. Необходимо учитывать качество (название бренда, наличие сертификата соответствия, гарантийные обязательства) и технические параметры.

Цифровой электронный мегаомметр с диапазоном от 500 до 5000 Вольт

Например, мегаомметр MY-40 от японской компании YOKOGAWA способен работать в 4-х диапазонах: 125, 250, 500 и 1000 В; с его помощью можно замерять сопротивление обычных проводников и мощных кабелей; он автоматически производит разрядку после окончания измерений. При этом его стоимость составляет около 32 тыс. рублей.

Некоторые приборы работают в диапазоне напряжений от 500 до 10000 Вольт и обладают функцией автоматического выбора пределов измерений, например, Standard Electric 6212 IN. Его стоимость составляет примерно 55 тыс. рублей.

Конечно, мощные и дорогие измерительные приборы более востребованы на специализированных предприятиях, а для использования в быту и небольших сервисных центрах достаточно приобрести недорогой компактный электронный или электродинамический аналоговый мегаомметр. Читайте также статью: → «Способы измерения сопротивления заземления, используемые приборы ».

Заключение и вывод по теме

Информация, предоставленная в статье, является информационной. Полные сведения о мегаомметрах и правилах работы с ними необходимо получать в специальных учебных пунктах подготовки электриков. Для этого существует соответствующая нормативная документация, в которой содержаться не только технические данные относительно измерительных устройств, но и меры безопасности при обращении с ними. Их знание и применение помогут сохранить работоспособность прибора и избежать поражения электротоком во время проведения работ.

Читайте также  Корыто для бетона своими руками
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]