Гистерезис в электротехнике

Гистерезис в электротехнике

Описание магнитного гистерезиса в электротехнике и электронике: плюсы и минусы этого явления

Гистерезис магнитный

Основа работы различных электротехнических приборов состоит в электромагнитном явлении. Магнитные поля взаимодействует благодаря сердечнику с насаженной катушкой из проводимых, медных, металлов.

Они находятся в реле, включателях, контакторах, электродвигателях, магнитах. В сердечниках и есть магнитный гистерезис.

Данная статья поможет разобраться, где он нужен, а где наносит вред оборудованию.

Терминология

Гистерезис основа магнитный

Гистерезис происходит от греческого языка, означает отставание или запаздывание. Это понятие используют в различных отраслях научных и технических знаний. Самое общее значение этого слова подразумевает разную манеру поведения систем в противоположном влиянии.

Детально это можно объяснить следующим образом. Гистерезис – это условие, возникающее вследствие воздействия одной физической величины, намагниченности, на другую физическую величину из внешней среды, магнитное поле.

Такое условие можно наблюдать в том случае, если состояние предмета изменяется под давлением внешних условий в этот же и предыдущий период времени.

Гистерезис явление магнитный

Неоднозначность зависимости таких значений может наблюдаться в разных процессах потому, что, чтобы состояние тела претерпело изменение, ему необходимо определенный промежуток времени. И чем выше медлительность изменения внешней среды, тем меньше такое отставание. Это и является гистерезисом. Он бывает магнитным, диэлектрическим и упругим условием.

Нас интересует данное магнитное явление, возникающее в электротехнике. Оно является важной характеристикой для металла, из которого изготавливают сердечник электрической машины или аппарата. Давайте рассмотрим этот процесс с помощью графика.

Гистерезис явление магнитный

Здесь изображена первоначальная кривая намагничивания ферромагнитного материала. Подробно это можно описать так.

Изначально намагнитив сердечник вплоть до насыщения в отрезке «индукция Bs, напряженность Hs» и снизив напряженность от +Hs до 0, индукция не изменится по кривой 3, а пойдет по проходящему выше участку ABr кривой I. Намагниченность материала останется при Н=0, а поле приобретет характеристику остаточной индукции Br.

При увеличении Н от 0 до значения Н=-Hs, изменится направление тока в катушке и знак напряженности магнитного поля Н. При достижении индукцией нулевых значений при указании напряженности поля Н=Нс, что является коэрцитивной силой, изменится знак и будет достигнута индукция насыщения В=-Вs при Н=-Нs.

Намагнитившись, в течение полного цикла зависимостью B (H) описывается петля I, которая называется предельная петля магнитного гистерезиса. Исходя из величины Pc по предельной петле бывают мягкие и твердые ферромагнетики.

В практических целях это можно описать следующим образом. Проводники пропускают ток и способствуют возникновению магнитного и электрического полей вокруг него. Получение электромагнита происходит путем сматывания провода в катушку и пропуска тока. Индуктивность катушки увеличится при помещении внутри нее сердечника с увеличением сил, возникших у нее.

Гистерезис зависим от металла, из которого изготовлен сердечник, именно его вид определяет свойства и работу, обозначаемую кривыми намагничивания.

Гистерезис явление магнитный

При использовании магнитотвердых металлов типа стали, мы заметим расширение гистерезиса. Если наш выбор остановится на мягких материалах, то будем наблюдать сужение графика.

Через катушку в цепи с переменным током будут наблюдаться движения тока в разных противоположных направлениях.

Вследствие этого все время будет происходить переворачивание полюсов. Этот процесс является одновременным в случае катушки, у которой отсутствует сердечник.

Однако при его наличии все немного изменится. Произойдет постепенное намагничивание, магнитная индукция возрастет и горизонтальный участок графика, обозначаемый как участок насыщения, будет достигнут.

Если целенаправленно менять направление тока и магнитного поля, то произойдет перемагничивание сердечника. Даже при простом выключении тока и исключении магнитного поля сердечник останется намагниченным, при этом претерпит некоторые изменения.

Для его размагничивания до первоначальных характеристик необходимо создание минусовой напряженности магнитного поля. Значит, катушка с током должны сработать в противоположную сторону.

Здесь следует снова упомянуть такое понятие как коэрцитивная сила и дать ей понятное определение, исходя из практики. Она показывает насколько трудный процесс намагничивания, когда сердечник полностью размагничен. Лучше, если она малая.

Обратное перемагничивание происходит также, но при участии нижней ветви.

Это означает, что сердечник будет магнититься за счет части энергии в цепи переменных токов, что приведет к снижению коэффициента полезного действия электродвигателя, трансформатора и нагреву деталей.

Для того, чтобы потери в связи с перемагничиванием сердечника были минимальными, гистерезис и показатели коэрцитивной силы должны быть малы.

Возникает данное явление в работе реле, в иных электромагнитных устройствах и в токе выключения и заключения.

Реле сработает и в выключенном состоянии, если подать немного тока. При включении ток заключения будет выше тока удержания. Отключение произойдет, если эти величины изменятся на прямо противоположные значения.

Гистерезис и электроника

Гистерезис обладает и полезными функциями. Так, магнитный гистерезис используют пороговые элементы и триггеры Шмидта для того, чтобы стабилизировать функционирование приборов, срабатывающих при помехах или случайных всплесках напряжения.

Задержавшись во времени можно исключить случайные отклонения.

По такому принципу организована работа электронного термостата. Он срабатывает только, достигнув задаваемого значения температуры.

Эффект задерживания позволяет исключить слишком высокую частоту срабатываний и предотвращает отключение термостата из-за изменений температур.

Вкратце опишем оба способа работы:

  1. Если бы магнитный гистерезис отсутствовал, то при достижении заданных параметров (температуры) термостат бы включался и отключался. Например, при установке регулятора температуры в 24 градуса тепла и при достижении этого значения, термостат отключится. Однако он включится снова, как только температура начнет опускаться. При этом в комнате может быть все еще достаточно тепло и включение термостата можно отложить до более низкого значения температуры. Потому, частые включения и отключения не рациональны в данном случае.
  2. При присутствии такого явления как магнитный гистерезис можно осуществить некоторую задержку в определенном охвате значений. Если брать за основу вышеописанный пример с 24 градусами, то термостат при их достижении точно так же отключится. Но включится он не сразу, как только упадет температура. Время его повторного включения можно будет задать. Например, если это значение составит 5 градусов, то снова включение термостата произойдет при падении температуры до 19 градусов.Эту задержку можно контролировать и устанавливать по своему усмотрению.

В заключение подведем небольшой итог. Явление магнитного гистерезиса плохо влияет на электрические приводы и трансформаторы, однако для работы регуляторов он необходим.

Петля гистерезиса в электротехнике

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис

— явление зависимости вектора намагничивания и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — , , и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H

по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления
M
с изменением направления
H
. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления
H
.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M

. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии,
M
как будто удерживается некоторым внутренним полем H_A (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления
M
(по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений
М
в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным H_A). При перемагничивании однодоменных частиц вектор
M
рядом последовательных необратимых скачков поворачивается в направлении
H
. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении
M
коэрцитивная сила H_c approx H_A. Более универсальным является механизм неоднородного вращения
M
. Однако наибольшее влияние на H_c он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом H_c может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис

Сегнетоэлектрический гистерезис

— неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией P_c. Направление поляризации может быть изменено электрическим полем. При этом зависимость P (E) в полярной фазе неоднозначна, значение P при данном E зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла P_r, при E = 0
  • значение поля E_ (коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина Delta U — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

Важно! В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента.

При протекании тока через проводник вокруг последнего возникает магнитное и электрическое поле. Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Важно! Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника.

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

Гистерезис

Гистерезис в общем понятии (от греческого – отстающий) — это свойство определенных физических, биологических и иных систем, которые реагируют на соответствующие воздействия с учетом текущего состояния, а также предыстории.
Гистерезис характерен т.н. «насыщением», и различными траекториями соответствующих графиков, отмечающих состояние системы в данный момент времени. Последние, в итоге, имеют форму остроугольной петли.

Если же рассматривать конкретно электротехнику, то каждый электромагнитный сердечник после окончания воздействия электрического тока в течение некоторого времени сохраняет собственное магнитное поле, называемое остаточным магнетизмом.

Его величина зависит, прежде всего, от свойств материала: у закаленной стали она существенно выше, чем у мягкого железа.

Но, в любом случае, явление остаточного магнетизма всегда присутствует при перемагничивании сердечника, когда необходимо размагнитить его до нуля, а затем изменить полюс на противоположный.

Любое изменение направления тока в обмотке электромагнита предусматривает (из-за наличия вышеуказанных свойств материала) предварительное размагничивание сердечника. Только после этого он может поменять свою полярность — это известный закон физики.

Для перемагничивания в обратном направлении необходим соответствующий магнитный поток.

Другими словами: изменение магнитной индукции сердечника не «поспевает» за соответствующими изменениями магнитного потока, которое оперативно создает обмотка.

Вот эта временная задержка намагничивания сердечника от изменений магнитных потоков и получило название в электротехнике как гистерезис.

Каждое перемагничивание сердечника предусматривает избавление от остаточного магнетизма путем воздействия противонаправленным магнитным потоком. На практике это приводит к определенным потерям электроэнергии, которые тратятся на преодоление «неправильной» ориентации молекулярных магнитиков.

Последние проявляются в виде выделения тепла, и представляют так называемые затраты на гистерезис.

Таким образом, стальные сердечники, например, статоров или якорей электродвигателей или генераторов, а также силовых трансформаторов, должны иметь по возможности наименьшую корреляционную силу. Это позволит снизить гистерезисные потери, повысив в итоге КПД соответствующего электрического агрегата или прибора.

Сам процесс намагничивания определяется соответствующим графиком – так называемой петлей гистерезиса. Она представляет замкнутую кривую, отображающую зависимость скорости намагничивания от изменения динамики напряженности внешнего поля.

Большая площадь петли подразумевает, соответственно, и большие затраты на перемагничивание.

Также практически во всех электронных приборах наблюдается и такое явление, как тепловой гистерезис – невозвращение после прогрева аппаратуры к изначальному состоянию.

В электротехнике и электронике явление гистерезиса используется в различных магнитных носителях информации (например, триггерах Шмидта), или в специальных гистерезисных электродвигателях.

Широкое распространение этот физический эффект нашел также в различных устройствах, предназначенных для подавления различных шумов (дребезг контактов, быстрые колебания и т. п.) в процессе переключения логических схем.

Гистерезис для инженеров. Петля гистерезиса. Прерванные процессы на петле гистерезиса. Смена направления процесса.

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

Петля гистерезиса

явление гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале –Нт… +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса – процессы намагничивания и размагничивания.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента.

При протекании тока через проводник вокруг последнего возникает магнитное и электрическое поле. Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника.

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

Гистерезис магнитный

гистерезис магнитный

Это необратимая и неоднозначная зависимость показателя намагниченности вещества (причем это, как правило, ферромагнетики магнитоупорядоченные) от внешнего магнитного поля. При этом поле постоянно изменяется – уменьшается или увеличивается. Общая причина существования гистерезиса – это наличие в минимуме термодинамического потенциала нестабильного состояния и стабильного, а также имеются необратимые переходы между ними. Гистерезис – это также проявление магнитного ориентационного фазового перехода 1-го рода. При них переходы от одной к другой фазам происходят из-за метастабильных состояний. Характеристика – это график, который носит название «петля гистерезиса». Иногда еще его называют «кривой намагниченности».

Использование явления гистерезиса

Одним из основных направлений использования ферромагнитных элементов является создание записывающих устройств. Для примера можно привести металлическую проволоку в бортовых самописцах водного и воздушного транспорта, ферритовые кольца оперативной памяти и триггеры Шмидта, а также другие магнитные носители.

На этой основе работают электромоторы, устройства шумо-, и помехоподавления, в том числе предназначенные для коммутации логических схем.

Магнитный гистерезис, точнее его действие, активно используется в научных исследованиях, в том числе для управления некоторым оборудованием. Использование графического изображения петель гистерезиса в основе своей применятся для упрощения расчётов характеристик магнитных полей и параметров систем.

Триггер Шмидта

Триггер Шмидта

Теория гистерезиса

потери на гистерезис

Стоит учитывать, что явление магнитного гистерезиса происходит также при вращении поля Н, а не только при его изменении по знаку и величине. Называется это гистерезисом магнитного вращения и соответствует изменению направления намагниченности М с изменением направления поля Н. Возникновение гистерезиса магнитного вращения наблюдается также при вращении исследуемого образца относительно фиксированного поля Н.

Кривая намагничивания характеризует также магнитную структуру домена. Структура изменяется при прохождении процессов намагничивания и перемагничивания. Изменения зависят от того, насколько смещаются границы доменов, от воздействий внешнего магнитного поля. Абсолютно все, что способно задержать все процессы, описанные выше, переводит ферромагнетики в нестабильное состояние и является причиной того, что возникает гистерезис магнитный.

Нужно учесть, что гистерезис зависит от множества параметров. Намагниченность меняется под воздействием внешних факторов – температуры, упругого напряжения, следовательно, возникает гистерезис. При этом появляется гистерезис не только намагниченности, но и всех тех свойств, от которых он зависит. Как можно видеть отсюда, явление гистерезиса можно наблюдать не только при намагничивании материала, но и при других физических процессах, связанных прямо или косвенно с ним.

Однодоменные ферромагнетики

гистерезис ферромагнетиков

В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение – образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях – прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.

Гистерезисные потери

петля магнитного гистерезиса

Во время динамического перемагничивания ферромагнетика переменным магнитным полем наблюдаются потери. Причем они составляют лишь малую долю от полных магнитных потерь. Если петли имеют одинаковую высоту (одинаковое максимальное значение намагниченности М), петля динамического вида оказывается шире статической. Происходит это вследствие того, что ко всем потерям добавляются новые. Это динамические потери, они обычно связаны с вихревым током, магнитной вязкостью. В сумме же получаются достаточно существенные потери на гистерезис.

Общие понятия гистерезиса

Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.

Подобная зависимость хорошо просматривается на примере человеческого тела. Чтобы изменить его состояние потребуется какой-то отрезок времени на релаксацию. Поэтому реакция тела будет всегда отставать от причин, вызвавших измененное состояние. Данное отставание значительно уменьшается, если изменение внешних условий также будет заме для ться. Тем не менее, в некоторых случаях может не произойти уменьшения отставаний. В результате, возникает неоднозначная зависимость величин, известная как гистерезисная, а само явление называется гистерезисом.

Эта физическая величина может встречаться в самых разных веществах и процессах, однако чаще всего рассматриваются понятия диэлектрического, магнитного и упругого гистерезиса. Магнитный гистерезис как правило появляется в магнитных веществах, например, таких как ферромагнетики. Характерной особенностью этих материалов является самопроизвольная или спонтанная неоднородная намагниченность, наглядно демонстрирующая это физическое явление.

Читайте также  Какие жидкие гвозди лучше
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]