Мой вариант схемы измерителя ESR

Мой вариант схемы измерителя ESR

ESR: понятие, способы измерения, информация, ссылки.

———————————————————————————————————————————————
— Предлагаю провести эксперимент: Электролитический конденсатор аккуратно извлекается из корпуса. Пакет фиксируется проволокой, что бы не развернулся. Выводы подключаются к измерителю емкости. Затем его постепенно «засушивают на пламени зажигалки. Цель эксперимента в целесообразности применения термина «СУХОЙ» конденсатор. Выводы сделайте сами.
———————————————————————————
И еще один эксперимент — подтверждающий нецелесообразность применения измерителя емкости для проверки конденсаторов, в том числе и оксидных.

— полная гальваническая развязка;
— изменение большим током и малым напряжением 75-100 мВ (никакой полупроводник не откроется);
— логарифмическая (сжатая) шкала.

Ни на что не претендую. Считаю что такое схемное решение лучше (чисто мое мнение). Пробовал разряжать через него сетевой кондюк: измерительные иглы полетели — схема цела (не считая слегка подгнутой стрелки).

R3 680 Om.* R2 12 Om. C1 0.22. C2 680 pF. С3 47 mF. IC 155ЛА3. D1 Д9. Д20.

Транс генератора: I — 100 вит 0, 09. II — 1,5 вит 0,56.
Транс измерителя: I — 10вит 0,56. II — (к прибору) 100вит. 0,09.
Намотка на ферритовых кольцах 10 — 12 мм. размеры не критичны.

резюме с точки зрения пользователя:
мой и Rottora дивайсы примерно одинаковы и имеют общий недостаток — значения меньше одного Ом трудно измерить(cчитать)-стрелка измерителя от нулевого значения отклоняется незначительно
в приборе slap(a) диапазон от нуля до единицы растянут (при шкале в 50 делений )
0R1 — 2
0R22 -4
0R27 -4,5
0R33 — 5
1R — 15делений
и т.д.
измерение ёмкости(тумблер) разбито на диапазоны (малогабаритный галетник -1,5,10,50,100,500мкФ)

Еще одна оригинальная разработка прибора для проверки емкостей:

«Принцип работы прибора основан на зарядке измеряемого конденсатора от источника сигнала переменного тока стабильной формы, амплитуды и частоты с последующим дифференцированием, выделением постоянной составляющей на синхронном детекторе и фиксацией ее измерительными системами.»

Спасибо за схемку.
Дешево и Сердито!!

В том, что у меня получилось:
1. Головка от Маяка120 — 0.5мА — Зашунтирована 2 мя диодами 1N4007-встречно паралельно .
2. Подстроечника в цепи вторички (200 витков на К17,5 *10 *непомню 2000НМ)
и головки нет вообще.
3. Диод — Д310. Замечено, что чем меньше падение на диоде — тем более чувствительна головка к малым (до 1 Ома) сопротивлениям (растянутость).
С Д9 — тяжко при сопротивлениях до 1 Ома.

4.На Условный Max выставляю при помощи подстроечника 1к от Лашки к первичке (10 витков проводом в 0.5 квадрата в черном фторопласте.).

Диапазон Индицируемых Сопротивлений (по калибровочным резисторам) 0.1 . 24 Ома.

При первом тесте на живучесть — 180мкФ при 300В — погнуло стрелку на головке — после чего были поставлены диоды. Лашка — жива.
Щупы — нет.

А провода на щупы и в правду нужно ставить толстые.

На 500-600 мВ не настраивал.
Просто брал Д310 и мерял его. Стрелка не шевелится — значит ОК!

ESR-метр

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово «ESR»? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания «гуляют» высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе «спрятан» резистор. А какая мощность будет выделяться на резисторе?

P — это мощность, Ватт (Чтобы узнать сколько Ватт, нужен ваттметр)

А как вы знаете, мощность, которая рассеивается на резисторе — это и есть тепло ;-) И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора — эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем — просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

вздувшийся конденсатор

Вздувшиеся электролитические конденсаторы — это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром:

ESR-метр

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее — приставки к мультиметру. С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

макетная плата

С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ

провод МГФТ

Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за «фрукт»? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

ESR-метр

Микросхемы по привычке всегда ставлю в панельки:

кроватка под микросхему

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

ESR-метр

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

ESR-метр

Здесь есть одно «но». Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

ESR-метр

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:

ESR-метр

Провода, идущие к пинцету, закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт — это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом — 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

ESR-метр

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

таблица ESR конденсаторов

Слева — номинал конденсатора, вверху — значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора

ESR-метр

ESR-метрESR-метр ESR-метр

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор «говорит», можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

ESR (ЭПС) измеритель — приставка к цифровому мультиметру

Я внес минимальные изменения. Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N, транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 — перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

↑ Наладка

Наладка очень проста и заключается в установке чувствительности с помощью R4 при подключенном резисторе 2…5 Ом и установке нуля цифрового вольтметра на диапазоне 200mV.
Операции надо повторить несколько раз, далее можно убедиться в точности измерителя, подключая резисторы 0,1…5 Ом. Настраивать надо со штатными шнурами, плату хорошенько промыть, конденсатор С3 должен быть термостабилен.

↑ К вопросу о точности вообще

Начиная с 10 Ом, точность примерно 3% и ухудшается примерно до 6% при 20 Ом (200мВ), но точность при измерениях бракованных элементов не важна. Поскольку измерения проводятся при комнатной температуре, термонестабильность будет мала, испытаний на эту тему я не проводил.
При измерениях ESR конденсаторов в компьютерных блоках питания и на материнских платах, я пришел к выводу, что конденсаторы от 1000 мкФ с сопротивлением 0,5 Ом надо срочно выпаивать и отправлять в ведро, нормальное ESR 0,02…0,05 Ом. Попутно обнаружил, что у исправных конденсаторов ESR очень сильно зависит от температуры, так у конденсатора 22 мкФ ESR уменьшалась от тепла пальцев на 10%. Это объясняет, почему некоторые фанатичные лампадные конструкторы специально делают подогрев конденсаторов в катодных цепях с помощью проволочных обогревателей. По этой причине, а также по причине имеющегося сопротивления контактов считаю, что в измерения тысячных долей Ом нет особой необходимости.

На первом фото ЭПС конденсатора 0,03 Ом.

Желающие подробнее ознакомиться с принципом работы данного устройства могут прочитать оригинальную статью на стр. 19, 20 «Радио» №8 за 2011 год.

↑ Моя печатная плата

↑ Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens.
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

↑ Файлы

Печатная плата:
esr.rar 14.22 Kb ⇣ 687

Оригинальная статья в журнале «Радио» № 8 за 2011 год:
radio-8-2011-esr-meter.7z 1.09 Mb ⇣ 74

Читайте также  Диаметры коронок для алмазного бурения
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]