Как рассчитать диаметр шкива ременной передачи
Классификация передач. В зависимости от формы поперечного сечения ремня передачи бывают: плоскоременные, клиноременные, круглоременные, поликлиноременные (рис. 69). Плоскоременные передачи по расположению бывают перекрестные и полуперекрестные (угловые), рис. 70. В современном машиностроении наибольшее применение имеют клиновые и поликлиновые ремни. Передача с круглым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).
Разновидность ременной передачи является Зубчатоременная, передающая нагрузку путем зацепления ремня со шкивами.
Рис. 69. Виды приводных ремней: а – плоский, б – клиновой, в – поликлиновой, г — круглый.
Рис. 70. Виды плоскоременных передач: а – перекрестная, Б – полуперекрестная (угловая)
Назначение. Ременные передачи относится к механическим передачам трения с гибкой связью и применяют в случае если необходимо передать нагрузку между валами, которые расположены на значительных расстояниях и при отсутствии строгих требований к передаточному отношению. Ременная передача состоит из ведущего и ведомого шкивов, расположенных на некотором расстоянии друг от друга и соединенных ремнем (ремнями), надетым на шкивы с натяжением. Вращение ведущего шкива преобразуется во вращение ведомого благодаря трению, развиваемому между ремнем и шкивами. По форме поперечного сечения различают Плоские, Клиновые, Поликлиновые и Круглые приводные ремни. Различают плоскоременные передачи — Открытые, которые осуществляют передачу между параллельными валами, вращающимися в одну сторону; Перекрестные, Которые осуществляют передачу между параллельными валамиПри вращении шкивов в противоположных направлениях; в Угловых (полуперекрестных) плоскоременных передачах шкивы расположены на скрещивающихся (обычно под прямым углом) валах. Для обеспечения трения между шкивом и ремнем создают натяжение ремней путем предварительного их упругого деформирования, путем перемещения одного из шкивов передачи или с помощью натяжного ролика (шкива).
Преимущества. Благодаря эластичности ремней передачи работают плавно, без ударов и бесшумно. Они предохраняют механизмы от перегрузки вследствие возможного проскальзывания ремней. Плоскоременные передачи применяют при больших межосевых расстояниях и, работающие при высоких скоростях ремня (до 100М/с). При малых межосевых расстояниях, больших передаточных отношениях и передаче вращения от одного ведущего шкива к нескольким ведомым предпочтительнее клиноременные передачи. Малая стоимость передач. Простота монтажа и обслуживания.
Недостатки. Большие габариты передач. Изменение передаточного отношения из-за проскальзывания ремня. Повышенные нагрузки на опоры валов со шкивами. Необходимость устройств для натяжения ремней. Невысокая долговечность ремня.
Сферы применения. Плоскоременная передача проще, но клиноременная обладает повышенной тяговой способностью и вписывается в меньшие габариты.
Поликлиновые ремни — плоские ремни с продольными клиновыми выступами-ребрами на рабочей поверхности, входящими в клиновые канавки шкивов. Эти ремни сочетают достоинства плоских ремней — гибкость и клиновых — повышенную сцепляемость со шкивами.
Круглоременные передачи применяют в небольших машинах, например машинах швейной и пищевой промышленности, настольных станках, а также различных приборах.
По мощности ременные передачи применяются в различных машинах и агрегатах при 50КВТ, (в некоторых передачах до 5000КВт), при окружной скорости — 40М/с, (в некоторых передачах до 100М/с), по передаточным числам 15, КПД передач: плоскоременные 0,93…0,98, а клиноременные – 0,87…0,96.
Рис. 71 Схема ременной передачи.
Силовой расчет. Окружная сила на ведущем шкиве
Расчет ременных передач выполняют по расчетной окружной силе с учетом коэффициента динамической нагрузки И режима работы передачи:
Где — коэффициент динамической нагрузки, который принимается =1 при спокойной нагрузке, =1,1 – умеренные колебания нагрузки, =1.25 – значительные колебания нагрузки, =1,5 – ударные нагрузки.
Начальную силу натяжения ремня FO (предварительное натяжение) принимают такой, чтобы ремень мог сохранять это натяжение достаточно длительное время, не подвергаясь большой вытяжке и не теряя требуемой долговечности. Соответственно этому начальное напряжение в ремне для плоских стандартных ремней без автоматических натяжных устройств =1,8МПа; с автоматическими натяжными устройствами = 2МПа; для клиновых стандартных ремней =1,2. 1,5МПа; для полиамидных ремней = 3. 4МПа.
Начальная сила натяжения ремня
Где А — Площадь поперечного сечения ремня плоскоременной передачи либо площадь поперечного сечения всех ремней клиноременной передачи.
Силы натяжения ведущей И ведомой S2 Ветвей ремня в нагруженной передаче можно определить из условия равновесия шкива (рис. 72).
Рис. 72. Схема к силовому расчету передачи.
Из условия равновесия ведущего шкива
С учетом (12.2) окружная сила на ведущем шкиве
Натяжение ведущей ветви
Натяжение ведомой ветви
Давление на вал ведущего шкива
Зависимость между силами натяжения ведущей и ведомой ветвей приближенно определяют по формуле Эйлера, согласно которой натяжений концов гибкой, невесомой, нерастяжимой нити, охватывающей барабан связаны зависимостью
Где — коэффициент трения между ремнем и шкивом, — угол обхвата шкива.
Среднее значение коэффициента трения для чугунных и стальных шкивов можно принимать: для резинотканевых ремней =0,35, для кожаных ремней = 0,22 и для хлопчатобумажных и шерстяных ремней = 0,3.
При определении сил трения в клиноременной передаче в формулы вместо – коэффициента, трения надо подставлять приведенный коэффициент трения для клиновых ремней
Где — угол клина ремня .
При совместном рассмотрении приведенных силовых соотношений для ремня получим окружную силу на ведущем шкиве
Где — коэффициент тяги, который определяется по зависимости
Увеличение окружного усилия на ведущем шкиве можно достичь увеличением предварительного натяжения ремня либо повышением коэффициента тяги, который повышается с увеличением угла обхвата и коэффициента трения.
В таблицах со справочными данными по характеристикам ремней указаны их размеры с учетом необходимых коэффициентов тяги.
Геометрический расчет. Расчетная длина ремней при известном межосевом расстоянии и диаметрах шкивов (рис.71):
Где . Для конечных ремней длину окончательно согласовывают со стандартными длинами по ГОСТ. Для этого выполняют геометрический расчет согласно схемы показанной на рис.73.
Рис.73. Схема к геометрическому расчету ременной передачи
По окончательно установленной длине плоскоременной или клиноременной открытой передачи действительное межосевое расстояние передачи пои условии, что
Расчетные формулы без учета провисания и начальной деформации ремня.
Угол обхвата ведущего шкива ремнем в радианах:
Для плоскоременной передачи рекомендуется , а для клиноременной .
Порядок выполнения проектного расчета. Для ременной передачи при проектном расчете по заданным параметрам (мощность, момент, угловая, скорость и передаточное отношение) определяются размеры ремня и приводного шкива, которые обеспечивают необходимую усталостную прочность ремня и критический коэффициент тяги при максимальном КПД. По выбранному диаметру ведущего шкива из геометрического расчета определяются остальные размеры:
Проектный расчет плоскоременной передачи по тяговой способности производят по допускаемому полезному напряжению, Которое определяют по кривым скольжения. В результате расчета определяется ширина ремня по формуле:
Где — окружная сила в передаче; — допустимая удельная окружная сила, которая соответствует максимальному коэффициенту тяги, которая определяется при скорости ремня =10 м/с и угле обхвата =1800; — коэффициент расположения передачи в зависимости от угла наклона линии центров к горизонтальной линии: =1,0, 0,9, 0,8 для углов наклона =0…600, 60…800, 80…900; — коэффициент угла обхвата шкива ; — скоростной коэффициент: ; — коэффициент режима работы, который принимается: =1,0 спокойная нагрузка; =0,9 нагрузка с небольшими изменениями, =0,8 – нагрузка с большими колебаниями, =0,7 – ударные нагрузки.
Для расчета предварительно по эмпирическим формулам определяется диаметр ведущего шкива
Где — передаваемая мощность в кВт, — частота вращения.
Диаметр ведущего шкива округляется до ближайшего стандартного.
Принимается тип ремня, по которому определяется допустимая удельная окружная сила по таблице 12.1.
Расчет диаметра шкивов
Ременная передача передает крутящий момент с ведущего вала на ведомый. В зависимости от передаточного числа она может повышать или понижать обороты. Передаточное число зависит от соотношения диаметров шкивов — приводных колес, связанных ремнем. При расчете параметров привода нужно также учитывать мощность на ведущем валу, скорость его вращения и общие габариты устройства.
Устройство ременной передачи, ее характеристики
Ременная передача представляет собой пару шкивов, соединенных бесконечным закольцованным ремнем. Эти приводные колеса, как правило, располагают в одной плоскости, а оси делают параллельными, при этом приводные колеса вращаются в одном направлении. Плоские (или круглые) ремни позволяют изменять направление вращения за счет перекрещивания, а взаимное расположение осей- за счет использования дополнительных пассивных роликов. При этом теряется часть мощности.
Клиноременные приводы за счет клиновидной формы поперечного сечения ремня позволяют увеличить площадь зацепления его со шкивом ременной передачи. На нем делается канавка по форме клина.
Зубчатоременные приводы имеют зубцы равного шага и профиля на внутренней стороне ремня и на поверхности обода. Они не проскальзывают, позволяя передавать большую мощность.
Для расчета привода важны следующие основные параметры:
- число оборотов ведущего вала;
- мощность, передаваемую приводом;
- потребное число оборотов ведомого вала;
- профиль ремня, его толщина и длина;
- расчетный, наружный, внутренний диаметр колеса;
- профиль канавки (для клиноременного);
- шаг передачи (для зубчатоременного)
- межосевое расстояние;
Вычисления обычно проводят в несколько этапов.
Основные диаметры
Для расчета параметров шкивов, а также привода в целом, применяются различные значения диаметров, так, для шкива клиноременной передачи используются:
- расчетный Dрасч;
- наружный Dнар;
- внутренний, или посадочный Dвн.
Для вычисления передаточного числа используется расчетный диаметр, а наружный-для расчета габаритов привода при компоновке механизма.
Для зубчатоременной передачи Dрасч отличается от Dнар на высоту зубца.
Передаточное число также рассчитывается, исходя из значения Dрасч.
Для расчета плоскоременного привода, особенно при большом размере обода относительно толщины профиля, часто принимают Dрасч равным наружному.
Расчет диаметра шкива
Вначале следует определить передаточное число, исходя из заложенной скорости вращения ведущего вала n1 и потребной скорости вращения ведомого вала n2/ Оно будет равно:
Если уже имеется в наличии готовый двигатель с приводным колесом, расчет диаметра шкива по передаточному отношению i проводится по формуле:
Если же механизм проектируется с нуля, то теоретически подойдет любая пара приводных колес, удовлетворяющих условию:
На практике расчет ведущего колеса проводят, исходя из:
- Размеров и конструкции ведущего вала. Деталь должна надежно крепится на валу, соответствовать ему по размету внутреннего отверстия, способу посадки, крепления. Предельно минимальный диаметр шкива обычно берется из соотношения Dрасч ≥ 2,5 Dвн
- Допустимых габаритов передачи. При проектировании механизмов требуется уложиться в габаритные размеры. При этом учитывается также межосевое расстояние. чем оно меньше, тем сильнее сгибается ремень при обтекании обода и тем больше он изнашивается. Слишком большое расстояние приводит к возбуждению продольных колебаний. Расстояние также уточняют, исходя из длины ремня. Если не планируется изготовление уникальной детали, то длину выбирают из стандартного ряда.
- Передаваемой мощности. Материал детали должен выдержать угловые нагрузки. Это актуально для больших мощностей и крутящих моментов.
Окончательный расчет диаметра окончательно уточняют по результату габаритных и мощностных оценок.
Шкивы по ГОСТ 20889-88 для приводных клиновых ремней
Номинальные расчетные диаметры dp шкивов, мм:
50; (53); 56; (60); 63; (67); 71; (75); 80; (85); 90; (95); 100; (106); 112; (118); 125; (132); 140; (150); 160; (170); 180; (190); 200; (212); 224; (236); 250; (265); 280; (300); 315; (335); 355; (375); 400; (425); 450; 475; 500; (530); 560; (600); (620); 630; (670); 710; (750); 800; (850); 900; (950); 1000; (1060); 1120; (1180); 1250; (1320); 1400; (1500); 1600; (1700); 1800; (1900); 2000; (2120); 2240; (2360); 2500; (2650); (2800); (3000); (3150); (3550); (3750); (4000) мм.
Примечание. Размеры, указанные в скобках, применяются в технически обоснованных случаях.
Минимальный расчетный диаметр меньшего шкива передачи, мм
В табл. 1 указаны минимальные расчетные диаметры шкивов для клиновых ремней разных сечений. Уменьшение диаметров по сравнению с указанными в таблице недопустимо, так так это приведет к быстрому выходу ремня из строя.
Размеры канавок шкивов для клиновых ремней
В табл. 2 приведены размеры, необходимые для изготовления канавок шкивов для клиновых ремней. Угол α клина канавки зависит от расчетного диаметра и изменяется в пределах от 34 (для шкивов малого диаметра для ремней сечений Z, А , В) до 40 (для шкивов большого диаметра).
Нормы точности для изготовления шкивов
В стандарте даются также нормы точности для изготовления шкивов:
- допускаемое отклонение от номинального значения расчетного диаметра шкивов — по h11;
- предельные отклонения угла канавки шкивов, обработанных резанием, должны быть не более:
- ±1° — шкивов для ремней сечений Z, А. В;
- ±30′ — шкивов для ремней сечений С, D, Е, ЕО.
Допуск биения конусной рабочей поверхности канавки шкива в заданном направлении на каждые 100 мм расчетного диаметра относительно оси должен быть не более:
- 0,20 мм — при частоте вращения шкива до 8 с -1 ;
- 0,15 мм — при частоте вращения шкива свыше 8 с -1 до 16 с -1 ;
- 0,10 мм — при частоте вращения шкива свыше 16 с -1 .
Значение параметра Ra шероховатости рабочих поверхностей канавок шкива должно быть не более 2,5 мкм.
Балансировка шкивов для клиновых ремней
Каждый шкив, работающий со скоростью свыше 5 м/с, должен быть сбалансирован. Допустимый дисбаланс:
- 0.06 г•м — при скорости от 5 до 10 м/с;
- 0,03 г•м — при скорости свыше 10 до 15 м/с;
- 0,02 г•м — при скорости свыше 15 до 20 м/с;
- 0.01 г•м — при скорости свыше 20 до 3о м/с.
Типы шкивов для клиновых ремней
В зависимости от конструкции различают шкивы типов 1…6 (рис. 1…6) и типов 7…9 (рис. 7…9).
Шкив типа 1 — монолитный с односторонней выступающей ступицей.
Шкив типа 2 — монолитный с односторонней выточкой.
Шкив типа 3 — монолитный с односторонней выточкой и выступающей ступицей.
Шкив типа 4 — с диском и ступицей, выступающей с одного торца обода.
Шкив типа 5 — с диском и ступицей, укороченной с одного торца обода.
Шкив типа 6 — с диском и ступицей, выступающей с одного и укороченной с другого торца обода.
Шкив типа 7 — со спицами и ступицей, выступающей с одного торца обода.
Шкив типа 8 — со спицами и ступицей, укороченной с одного торца обода.
Шкив типа 9 — со спицами и ступицей, выступающей с одного и укороченной с другого торца обода.
Даны варианты исполнения посадочного отверстия (рис. 10):
- цилиндрический,
- конический со шпонкой,
- конический.
Рис.10
Условное обозначение шкивов для приводных клиновых ремней
Приведены система условных обозначений шкивов и примеры условного обозначения шкива.
Схема построения условного обозначения шкивов
1 — тип шкива;
2 — сечение ремня;
3 — число канавок шкива;
4 — расчетный диаметр шкива;
5 — диаметр посадочного отверстия;
6 — марка материала;
7— обозначение стандарта на шкив.
Пример условного обозначения шкива для клиноременной передачи
Пример условного обозначения шкива для приводных клиновых ремней типа 1, с сечением А, с тремя канавками, расчетным диаметром dp = 224 мм, с цилиндрическим посадочным отверстием d1 = 28 мм, из чугуна марки СЧ20 по ГОСТ 1412 -85:
Шкив 1А 3.224.28.СЧ20 ГОСТ 20889-88.
То же, с коническим посадочным отверстием:
Шкив 1А 3.224.28.К.СЧ20 ГОСТ 20889-88.
Шкивы тонкостенные клиноременных передач
Задача уменьшения массы и моментов инерции клиноременных шкивов решается изготовлением этих шкивов из тонкой листовой стали штамповкой и сваркой. Подобные шкивы (сварные и сборные) (рис. 11…16) получили в настоящее время широкое распространение. Конструкция сварного шкива дана также в разделе сварных соединений. Конструкция сборного шкива (рис. 14) позволяет изменением числа проставок (дисков) менять диаметр.