Как проверить трансформаторы тока на исправность

Как проверить трансформаторы тока на исправность

Как проверить исправность трансформатора 220 В мультиметром

Трансформаторы получили широкое применение в радиоэлектронике. Они являются преобразователями переменного напряжения и, в отличие от других радиоэлементов, выходят из строя редко. Для определения их исправности нужно знать, как проверить трансформатор мультиметром. Этот способ достаточно простой, и необходимо понять принцип работы трансформатора и его основные характеристики.

Основные сведения о трансформаторах

Для преобразования номиналов переменного напряжения применяются специальные электрические машины — трансформаторы.

Трансформатор — это электромагнитное устройство, предназначенное для преобразования переменного напряжения и тока одной величины в переменный ток и напряжение другой величины.

Устройство и принцип действия

Используется во всех схемах питания потребителей, а также для осуществления передачи электроэнергии на значительные расстояния. Устройство трансформатора достаточно примитивно:

  1. Ферромагнитный сердечник выполнен из ферромагнетика и называется магнитопроводом. Ферромагнетики — это вещества, обладающие самопроизвольной намагниченностью, параметры (атомы обладают постоянным спиновым или орбитальным магнитными моментами) сильно изменяются благодаря магнитному полю и температуре.
  2. Обмотки: первичная (подключается сетевое напряжение) и вторичная (питание потребителя или группы потребителей). Вторичных обмоток может быть больше 2-х.
  3. Дополнительные составляющие применяются для силовых трансформаторов: охладители, газовое реле, индикаторы температуры, поглотители влаги, трансформаторы тока, системы защиты и непрерывной регенерации масла.

Принцип действия основан на нахождении проводника в переменном электрическом поле. При движении проводника, например, соленоида (катушка с сердечником), на его выводах можно снять напряжение, которое зависит прямо пропорционально от количества витков. В трансформаторе реализован этот подход, но осуществляет движение не проводник, а электрическое поле, образованное переменным током. Он движется по магнитопроводу, выполненному из ферромагнетика. Ферромагнетик — это специальный сплав, идеально подходящий для изготовления трансформаторов. Основные материалы для сердечников:

  1. Электротехническая сталь содержит большую массовую долю кремния (Si) и соединяется под действием высокой температуры с углеродом, массовая доля которого не более 1%. Ферромагнитные свойства нечетко выражаются, и происходят потери на вихревые токи (токи Фуко). Потери прямо пропорционально растут с увеличением частоты. Для решения этой проблемы и происходит добавление Si в углеродистую сталь (Э42, Э43, Э320, Э330, Э340, Э350, Э360). Расшифровывается аббревиатура Э42: Э — электротехническая сталь, содержащая 4% — Si с 2% магнитных потерь.
  2. Пермаллой — вид сплава, и его составляющими частями являются никель и железо. Этот вид характеризуется высоким значением магнитной проницаемости. Применяется в маломощных трансформаторах.

При протекании тока по первичной обмотке (I) в ее витках образуется магнитный поток Ф, который распространяется по магнитопроводу на II обмотку, вследствие чего в ней образуется ЭДС (электродвижущая сила). Устройство может работать в 2-х режимах: нагрузки и холостого хода.

Коэффициент трансформации и его расчет

Коэффициент трансформации (k) является очень важной характеристикой. Благодаря ему можно выявить неисправности. Коэффициент трансформации — это величина, показывающая отношение количества витков I обмотки к числу витков II обмотке. По k трансформаторы бывают:

  1. Понижающими (k > 1).
  2. Повышающими (k < 1).

Найти его просто, и для этого необходимо узнать отношение напряжений каждой из обмоток. При наличии более 2-х обмоток расчет производится для каждой из них. Для точного определения k нужно пользоваться 2-мя вольтметрами, так как напряжение сети может изменяться, и эти изменения нужно отслеживать. Подавать нужно только напряжение, указанное в характеристиках. Определяется k несколькими способами:

По паспорту, в котором указаны все параметры устройства (напряжение питания, коэффициент трансформации, сечение провода на обмотках, количество витков, тип магнитопровода, габариты).

  1. Расчетный метод.
  2. При помощи моста Шеринга.
  3. При помощи специальной аппаратуры (например, УИКТ-3).

Рассчитать k несложно, и существует ряд формул, позволяющих сделать это. Нет необходимости учитывать потери магнитопровода, применяемые при изготовлении на заводе. Исследования показали взаимосвязь магнитопровода (железняк) и k. Для улучшения КПД трансформатора нужно уменьшить магнитные потери:

  1. Использование специальных сплавов для магнитопровода (уменьшение толщины и спецобработка).
  2. Уменьшение количества витков при использовании толстого провода, а на высоких частотах большое сечение является пространством для создания вихревых токов.

Для этих целей применяют аморфную сталь. Но и она обладает ограничением, называемым магнитострикцией (изменение геометрических размеров материала под действием электромагнитного поля). При использовании этой технологии удается получать листы для железняка толщиной в сотые доли миллиметров.

Расчетные формулы

При отсутствии соответствующей документации нужно производить расчеты самостоятельно. В каждом конкретном случае способы расчета различны. Основные формулы расчета k:

  1. Без учета возможных погрешностей: k = U1 / U2 = n1 / n2, где U1 и U2 — U на I и II обмотках, n1 и n2 — количество витков на I и II обмотках.
  2. При учете погрешностей: k = U1 / U2 = (e *n1 + I1 * R1) / (e * n2 + I2 * R2), где U1 и U2 — напряжения на I и II обмотках; n1 и n2 — кол-во витков на I и II обмотках; е — ЭДС (электродвижущая сила) в каждом из витков обмоток; I1 и I2 — силы токов I и II обмоток; R1 и R2 — сопротивления для I и II.
  3. По известным мощностям при параллельном подключении обмоток: kz = Z1 / Z2 = ku * ku, где kz — k по мощности, Z1 и Z2 — мощности на первичной и вторичной обмотках, ku — k по напряжению (k = U1 / U2).
  4. По токам при последовательном подключении обмоток: k = I1 / I2 = n2 / n1. При учете результирующего тока холостого хода (ток потерь Io): I1 * n1 = I2 * n2 + Io.

Проверка исправности

В основном трансформаторы применяются в блоках питания. Намотка и изготовление самого трансформатора с нуля — сложная задача и под силу не каждому. Поэтому за основу берется уже готовый и модернизируется путем изменения количества витков вторичной обмотки. Основные неисправности трансформатора:

  1. Обрыв выводов.
  2. Повреждение магнитопровода.
  3. Нарушение изоляции.
  4. Сгорание при КЗ.

Диагностика начинается с визуального осмотра. Первоначальная диагностика включает в себя осмотр выводов трансформатора, его катушек на предмет обугливаний, целостность магнитопровода.

При изношенных выводах необходимо зачистить их, а в некоторых случаях при обрыве — разобрать трансформатор, припаять их и прозвонить тестером.

При поврежденном магнитопроводе нужно его заменить или узнать из справочников об аналогичном для конкретной модели, так как он ремонту не подлежит. Можно заменить отдельные пластины.

При КЗ необходимо провести диагностику на работоспособность при помощи измерительных приборов (проверка трансформатора мультиметром).

При пробитой изоляции происходит контакт между витками обмоток или на корпус. Определить эту неисправность достаточно сложно. Для этого необходимо произвести следующие действия:

  1. Включить прибор в режим измерения сопротивления.
  2. Один щуп должен быть на корпусе, а другой нужно присоединить к каждому выводу трансформатора поочередно.
  3. Прибор должен во всех случаях прозвонок показывать бесконечность, что свидетельствует об отсутствии КЗ на корпус.
  4. При любых показаниях прибора пробой на корпус существует, и нужно полностью разбирать трансформатор и даже разматывать его обмотки для выяснения причины.

Для поиска короткозамкнутых витков нужно определить, где I обмотка (вход), а где II (выход) у неизвестного трансформатора. Для этого стоит воспользоваться следующим алгоритмом:

  1. Выяснить сопротивление первичной обмотки трансформатора 220 вольт при помощи измерений мультиметра в режиме «сопротивления». Необходимо записать показания прибора. Выбрать обмотку с наибольшим сопротивлением.
  2. Взять лампочку на 50 Вт и подключить ее последовательно с этой обмоткой.
  3. Включить в сеть на 5−7 секунд.

После этого отключить и проверить обмотки на нагрев. Если заметного превышения температуры нет, то приступить к поиску короткозамкнутых витков. Как проверить трансформатор на межвитковое замыкание: необходимо воспользоваться мегаомметром при напряжении 1000 В. При измерении пробоя изоляции необходимо прозванивать корпус и выводы обмоток, а также независимые между собой обмотки, например, вывод I и II.

Нужно определить коэффициент трансформации и сравнить его с документом. Если они совпадают — трансформатор исправен.

Существуют еще два метода проверки:

  1. Прямой — подразумевает проверку под нагрузкой. Для его осуществления необходимо собрать цепь питания I и II обмоток. Путем измерения значений тока в обмотках, а затем по формулам (4) определить k и сравнить его с паспортными данными.
  2. Косвенные методы. Включают в себя: проверку полярности выводов обмоток, определение характеристик намагничивания (используется редко). Полярность находится при помощи вольтметра или амперметра магнитоэлектрического исполнения с определением полярности на выходе. При отклонении стрелки вправо — полярности совпадают.

Проверка импульсного трансформатора достаточна сложная, и ее может произвести только опытный радиолюбитель. Существует много способов проверки исправности импульсников.

Таким образом, трансформатор можно легко проверить мультиметром, зная основные особенности и алгоритм проверки. Для этого нужно выяснить тип трансформатора, найти документацию по нему и рассчитать коэффициент трансформации. Кроме того, необходимо произвести визуальный осмотр прибора.

Как проверить трансформатор мультиметром

Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги. В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр. Также для некоторых опытов нам понадобится лампа накаливания с патроном.

С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.

Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники. А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали. На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.

При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле. Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС. При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.

Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:

А так как мощность – это произведение тока i на напряжение u

S = u∙i,

Откуда получаем простое уравнение:

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:

Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.

Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.

Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.

При встречном соединении начала или концы обмоток соединяются вместе. При встречном соединении ЭДС направлены встречно. На выводах получают разницу ЭДС: от большего значения отнимается меньшее значение. Если соединить встречно две обмотки с равными значениями ЭДС, то на выводах будет ноль.

Теперь мы знаем, как, как проверить трансформатор мультиметром, а также можем найти первичную и вторичную обмотки.

Еще статьи по данной теме

Всем доброго дня !
Гораздо нагляднее проверять трансформатор стрелочными авометрами. Скорость отклонения стрелки позволяет ориентировочно судить об индуктивности, соответственно, о способности материала сердечника к насыщению.

Хороший и подробный обзор. Хочу заметить, что часто встречается непонимание понятия мощности, или возможностей имеющегося трансформатора. Обычно, в руки попадает неизвестный трансформатор, конструкция не позволяет увидеть диаметр вторичных обмоток. Возникает вопрос – какой ток допустимо отобрать со вторичных обмоток без опасности перегрева или выхода из строя трансформатора. В данной статье этот важный вопрос не затронут.

Как проверить трансформатор мультиметром

Трансформаторы стали частью жизни человека с началом электрификации. Далее они стали использоваться в качестве источников постоянного напряжения для различной аппаратуры, приборов, бытовой техники.

В статье изложена информация о принципе работы этих устройств, разновидностях, поисках мощности. Также будут даны советы, как проверить трансформатор мультиметром.

Принцип работы и назначение

Основным назначением трансформатора является преобразование или понижение электрического напряжения. В зависимости от конструкции и назначения, трансформаторы изменяют классность токов, напряжение, или преобразуют импульс в необходимое значение.

В работу трансформатора заложен принцип образования магнитного поля при взаимодействии металлического сердечника и постоянного напряжения. При подключении напряжения в 220 В, ток движется по первичной обмотке трансформатора, образуя магнитное поле. Далее ток попадает во вторичную обмотку, число и шаг которой намного меньше. Создается сильное сопротивление, которое сглаживается за счет воздействия магнитных потоков. Таким образом, во вторичной обмотке, напряжение сильно занижается, что приводит к выходному напряжению более низкого числа.

Конструкция

В независимости от конструкции и назначения трансформатора, его конструкция максимально проста. Эти устройства состоят из:

  1. Стальной или ферромагнитный сердечник. Используется для образования магнитного поля. Сердечники могут быть различных видов. Все зависит от назначения устройства и величины преобразования тока.
  2. Обмотка. В устройстве находится минимум 2 обмотки: первичная и вторичная. Представляет собой медный или алюминиевый изолированный лаком провод. Обмотка наматывается на трансформатор с заданным количеством витков, шагом, сечением провода. Именно обмотка трансформатора влияет на параметр входного и выходного напряжения.
  3. Клеммы и контакты. Необходимы для включения устройства в сеть и выходную цепь.
  4. Конструктивные дополнения. Ими могут быть защитные корпуса, изоляционные и крепежные элементы, радиаторы охлаждения. Все это необходимо для обеспечения надежного монтажа и защиты от воздействия постоянного напряжения.

Тип и назначение преобразователя напряжения можно определить по внешнему виду. Для этого необходимо знать основные разновидности трансформаторов.

Разновидности

В зависимости от назначений, трансформаторы используются в различных сферах, не только в приборостроении. Различаются по следующим типам:

  1. Силовой. Используется как понижающий трансформатор на электростанциях, крупных организациях, в сети электроснабжения населения. В цепи электроснабжения используется несколько подобных устройств. Их задача понизить напряжение от электростанции до потребителя. Также силовые трансформаторы могут работать по обратному принципу, в качестве повышающего устройства. Такие устройства необходимы для передачи электричества на большие расстояния от электростанций потребителям, существенно снимая нагрузку с генераторов.
  2. Сетевые. Самые распространенные в бытовой технике. Основной задачей этих устройств является снижение напряжения с 220 до 36, 24, 12, 9 вольт. Сетевые трансформаторы можно встретить в бытовой технике, произведенной до 2000 годов. Теперь эти устройства выглядят значительно меньше и их редко применяют.
  3. Импульсные. Пришли на смену сетевым элементам. Основное отличие в работе состоит в преобразовании импульсного напряжения, а не прямого тока. Этот принцип способствовал уменьшению габаритов, возможность экономии материалов, использование трансформатора в роли занижающего устройства и защиты от перегрузок.
  4. Трансформатор тока. Используется для измерения токовой величины. Применяется в цепях между силовыми трансформаторами и выходом в 380 вольт и счетчиками потребления электричества. Также применяется в качестве защитного устройства. Первичная обмотка этого трансформатора включается в цепь подачи электричества по 1 фазе, осуществляя защиту от перепада напряжения в результате выхода из строя силового устройства.

Также существуют лабораторные или автотрансформаторы. Их отличием является только возможность регулировки и переключения выходного напряжения с одного значения на другое.

Проверка

Проверка трансформатора на работоспособность и величину выходного напряжения необходимо начинать с визуального осмотра. На корпусе многих современных и элементах старого производства, нанесена принципиальная схема. В ней находится информация о контактах входа и выхода, количество витков первичной и вторичной обмотки, величины выходных напряжений. Если этой информации нет, необходимо прозвонить трансформатор.

Многие начинающие радиолюбители сталкиваются с проблемой, как прозвонить импульсный трансформатор мультиметром. Далее будут даны рекомендации на примере именно этого устройства.

Межвитковое короткое замыкание

Самый важный тест. Запрещается проводить подключение неизвестных, найденных где — то трансформаторов, без теста на короткое замыкание. Межвитковое замыкание не определяется при помощи мультиметра. Причина этого кроется в пробое двух рядом стоящих обмоток и их соединении между собой.

При прозвонке на сопротивление, оно останется неизменным (если до КЗ нет обрыва). Поэтому проверяется трансформатор визуально. Любые потемнения, вспучивания, плавления изоляции или нагар на бумаге можно считать следствием короткого замыкания. Плавление и нагар произошли из-за нагрева обмотки при нагрузке. При межвитковом замыкании первичной обмотки, ток проходит меньшее количество витков, что создает нагрузку и нагрев. Также КЗ можно определить по запаху гари.

Если внешне устройство не имеет дефектов изоляционного покрытия, можно начинать следующую проверку.

Поиск обмоток

Этот тест необходим, если элемент был изначально не подключен к электрической схеме прибора или устройства. Первичная обмотка трансформатора, имеет большее число витков, так как на нее подается высокое напряжение. Значит и сопротивление должно быть значительно больше. Вход первичной обмотки всегда располагается в верхней части устройства, клеммы вторичной в нижней. Для поиска необходимо:

  1. Мультиметр перевести в режим замера сопротивления.
  2. Оба контрольных щупа соединить с двумя выводами трансформатора.
  3. Сохранить полученные значения.

Далее нужно найти выходы вторичных катушек. Делается это по тому же принципу. Если выходов более 2, то необходимо провести замер каждой пары. Полученные значения также сохраняются.

Читайте также  Как посчитать мощность трансформатора

Теперь необходимо провести сверку результатов. Выводы с самым большим сопротивлением укажут на первичную обмотку входа. Остальные пары будут являться выходными контактами.

Целостность

Определение целостности необходимо для того чтобы узнать, нет ли обрыва в цепи трансформатора. Предыдущая проверка помогла выяснить, какие контакты являются входящими и выходящими. Теперь нужно определить их целостность. Для этого нужно:

  1. Перевести мультиметр в режим прозвонки со звуковым оповещением.
  2. 2 контрольных щупа подключить к входным контактам трансформатора.
  3. Звуковое оповещение будет свидетельствовать о целостности провода.

Таким же образом нужно проверить остальные контакты выхода. У современных понижающих устройств бытового назначения есть один нюанс. В его схему первичной обмотки встроен тепловой резистор. Найти его просто. Он припаян между клеммой и началом обмотки и скрыт под изоляцией. Если проверка на входе показала обрыв, стоит осторожно вскрыть изоляционный слой и найти резистор. Далее сделать еще один замер, но только самого провода, за резистором. Если проверка была удачной, значит необходима замена теплового элемента.

Тепловой резистор необходим для отключения цепи во время перегрева. Он может выйти из строя по причине высокой нагрузки, не пропустив в цепь высокое напряжение.

Определение величины входящего напряжения

Этот тест поможет узнать, можно ли эксплуатировать элемент от бытовой электрической сети или он рассчитан на напряжения других значений. Для определения величины тока необходимо:

  1. Подключить один контакт лампы накаливания к клемме входа ТР.
  2. Второй контакт к источнику напряжения 220 В.
  3. Клемму «2» от ТР к «2» клемме источника напряжения.

Если лампа не загорается, то это указывает на то, что трансформатор предназначается для работы от сети 220 вольт. Горение лампы любой величины накала, укажет на работу от токов иных величин.

Замер выходящего напряжения

После проведения всех тестов, на целостность импульсного трансформатора, можно перейти к его подключению к электрическому напряжению и замеру выходного напряжения. Для этого нужно:

  1. К найденным разъемам входа подключить напряжение 220 вольт.
  2. На входных клеммах попарно замерить напряжение.
  3. Полученные результаты сохранить.

Если на корпусе трансформатора нанесены обозначения величины выходящих напряжений, то при замере они должны быть больше на 5–20 %. Это делается для запаса мощности, при последующем подключении к диодному мосту.

Если маркировки нет, нужно выполнить следующие действия:

  1. Красный контрольный щуп подключить к «1» клемме вывода.
  2. Черный щуп поочередно подключать к остальным выводам.
  3. Если замер дал результаты от 9 до 24–36 вольт, то эти контакты необходимо отметить.

Проверка считается удачной, если все разъемы показали определенные значения.

Важно! На выходах трансформаторов переменное напряжение. Запрещаться делать замер, касаясь руками оголенных контактов.

Определение мощности

Далее будет рассмотрен вопрос, как узнать мощность трансформатора. Для этого потребуется замерить ширину его сердечника. Если ТР имеет сердечник типа «Ш», то придется замерить толщину центральных пластин. Например, толщина пластин 2 см, а ширина центрального набора 1.7 см. Необходимо перемножить эти значения, получив число 3.4 кв/см. Далее понадобится коэффициент усреднения для трансформаторов, равный 1.3. 3.4 разделить на 1.3 = 2.6 кв/см. Это значение определяет мощность ТР равную 7 Вт.

Многие задаются вопросом, как определить мощность трансформатора мультиметром. Бытовой элемент таким способом протестировать не получиться.

Советы

Проверка работоспособности трансформаторов важна, перед подключением или ремонтом устройства. При работе нужно соблюдать следующие правила:

  1. Внимательно изучить маркировку и схему на корпусе.
  2. Если на корпусе нет схемы, выполнять прямое подключение запрещено.
  3. Запрещается подключать в сеть неизвестный ТР, без проверки на короткое замыкание.
  4. Любые замеры под напряжением проводятся без контакта с клеммами.
  5. Не выпаивая устройство из схемы, не получиться сделать замер выходящего сопротивления.
  6. При работе нужно четко соблюдать технику безопасности.

Трансформаторы, особенно неизвестные, могут стать причиной короткого замыкания электропроводки и привести к возникновению пожара.

Заключение

Сегодня были подробно описаны правила проверки обычных бытовых трансформаторов. Проверки силовых, автоматических и лабораторных аналогов проводятся другими способами, с использованием более точной измерительной аппаратуры.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]