Фазоимпульсный регулятор мощности схема

Фазоимпульсный регулятор мощности схема

Симисторный диммер с фазоимпульсным регулированием

Симисторный диммер с фазоимпульсным регулированием — это тиристорный регулятор мощности, предназначенный, в частности, для регулирования яркости свечения ламп накаливания в бытовых электроосветительных приборах (люстрах, бра, торшерах и т. п.). Его можно встраивать в настенные выключатели в жилых помещениях

Анализ схем промышленно выпускаемых диммеров (в основном китайского производства) показал, что фазосдвигающая цепь в них питается нестабилизированным напряжением. Это приводит к тому, что момент открывания динистора в каждом полупериоде, а значит, и симистора, зависит от напряжения сети, что, в свою очередь, является причиной заметных перепадов мощности нагрузки диммера при колебаниях напряжения сети. Это ограничивает сферу применения подобных устройств.Выручить в этой ситуации мог бы диодный мост, включённый на входе регулятора (диод VD2 придётся изъять), но разместить мощные диодный мост и тринистор в стандартной нише выключателя проблематично, не говоря уже об отсутствии в зоне монтажа активной конвекции воздуха. Наличие в цепи нагрузки пяти элементов надёжности устройству тоже не добавляет.

К тому же лампы в светильниках, перегорая, часто вызывают замыкание цепи, хоть и кратковременное, но вполне достаточное для выведения из строя переключательного элемента. Каждый раз заменять этот элемент и выпрямительный мост весьма накладно как в плане трудозатрат, так и денежных расходов. Фазоимпульсные регуляторы мощности с мощным симистором в качестве переключательного элемента отличают более высокий КПД и малое число элементов в цепи нагрузки. схема показана на рис.

На транзисторах VT1 и VT2 собран аналог динистора, в который введён диод VD1. Это позволило использовать транзистор VT2 в роли замыкателя диагонали теперь уже маломощного выпрямительного моста VD3—VD6, включённого в цепь управляющего электрода симистора VS1. В начале полупериода напряжения сети оба транзистора, диод VD1 и симистор закрыты, а конденсатор С1 разряжен. Увеличивающееся напряжение создаёт ток через резисторы R9, R8, диоды моста, резистор R7 и стабилитрон VD2. Падения напряжения на резисторе R9 пока недостаточно для открывания симистора. Стабилитрон VD2, включённый последовательно с балластным резистором R7, ограничивает напряжение между точками А и Б на уровне 12 В.

Через резисторы R3, R4 начинает заряжаться конденсатор С1. Как только напряжение на нём превысит напряжение на резисторе R6, начнёт открываться транзистор VT1. Падение напряжения на резисторе R2 приоткроет транзистор VT2, из-за чего начнёт уменьшаться напряжение на его коллекторе. В результате этого начинает уменьшаться напряжение на резисторе R6. Возникает положительная ОС, действие которой приводит к лавинообразному открыванию обоих транзисторов аналога динистора. Как только падение напряжения на транзисторе VT2 станет меньше, чем на резисторе R6, откроется диод VD1, ещё более ускоряя открывание аналога динистора и снижая тем самым мощность, рассеиваемую на транзисторе VT2. Оба транзистора в конце процесса входят в насыщение.

Выходная диагональ диодного моста VD3—VD6 оказывается замкнутой, ток через резисторы R8 и R9 увеличивается и открывается симистор VS1, подключая нагрузку к сети на оставшуюся часть полупериода. Скорость зарядки конденсатора С1, а значит, и момент открывания транзистора VT1 зависят от положения движка переменного резистора R4, которым и регулируют мощность, выделяющуюся в нагрузке.

Если сопротивление цепи R3R4 окажется настолько большим, что конденсатор не успеет зарядиться до напряжения, необходимого для открывания аналога динистора, он останется закрытым. Но в конце полупериода конденсатор С1 всё равно разрядится транзистором VT1 вследствие того, что напряжение на резисторе R6 к этому моменту уменьшится до нулевого.

Такая привязка момента начала зарядки конденсатора С1 к началу полупериода необходима для того, чтобы исключить эффект «гистерезиса». Который может возникнуть при регулировании мощности резистором R4. Этот эффект проявляется в «затягивании» регулировочной характеристики. При повороте ручки регулятора из положения минимальной мощности на малый угол мощность в нагрузке увеличивается скачком. Резистор R1 ограничивает ток разрядки на безопасном для транзисторов уровне, растягивая разрядный импульс во времени для более уверенного открывания симистора, a R8 ограничивает ток через его управляющий электрод. Резистор R2 предотвращает самопроизвольное срабатывание аналога динистора из-за увеличения тока коллектора транзистора VT2 при его разогревании. Резистор R9 удерживает симистор закрытым (если он ещё не был открыт) на пиках сетевого напряжения.

Максимальная мощность нагрузки регулятора при обеспечении эффективного охлаждения симистора и транзистора VТ2 — 1 кВт

Большая часть деталей устройства смонтирована на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы представлен на рис.

Все резисторы, кроме R4, — МЛТ; R4 — любой малогабаритный, умещающийся в отведённом ему пространстве. Поскольку все детали регулятора находятся под напряжением сети, необходимо при его установке и пользовании учитывать это обстоятельство. В частности, ручка переменного резистора R4 должна быть изготовлена из изоляционного материала.

Резисторы R8, R9 распаивают на выводах симистора, устанавливаемого вне платы. Если мощность нагрузки превышает 600 Вт, симистор следует снабдить теплоотводом в виде пластины размерами 20x20x1 мм из меди. Конденсатор С1 — КМ-6, К73-17 или К73-9

Диоды КД105В можно заменить на КД105Г или другие на обратное напряжение не менее 400 В. Транзистор КТ361В заменим любым из этой серии (с коэффициентом h21E>50), а КТ538А — на КТ6135А или, в крайнем случае, на КТ940А, у которого ограниченный запас по напряжению коллектор—эмиттер (h21E>20). Разъём Х1 — любой малогабаритный, с двумя контактами, рассчитанный на сетевое напряжение; можно использовать два одноконтактных. Подойдут также и винтовые соединительные зажимы.

Налаживания регулятор не требует

, но, возможно, будет целесообразно подобрать точнее резистор R3 по достижению максимальной яркости ламп. В крайнем левом (по схеме) положении движка резистора R4.

Собранную плату устанавливают в нишу предварительно демонтированного стенного выключателя. Снаружи нишу закрывают декоративной лицевой панелью. На которой закрепляют переменный резистор R4 — он будет служить и включателем освещения, и регулятором яркости. Устройство можно смонтировать также в подставке торшера или настольной лампы.

Фазовый регулятор мощности с управлением на МК

Несмотря на наличие в схеме микроконтроллера, это довольно простое устройство, предназначенное для регулирования мощности паяльника либо любой другой подходящей по мощности нагрузки, что питается от 220 В.

Схема фазового регулятора мощности

Что касается принципиальной схемы, здесь нет ничего необычного – контроллер AT90S2313S типичная синхронизация с сетью на PC814, управление симистором через оптрон MOC3021, а также симистор без защиты.

Фазовый регулятор мощности с управлением на МК

Значение настройки (от 0 до 100) умножается на 100 мс, давая задержку переключения симистора (от 0 до 10 мс).

Фазовый регулятор мощности с управлением на МК

Как видите, в схеме есть бестрансформаторный БП, благодаря которому плата вышла относительно небольшая, односторонняя, всего несколько элементов SMD типа, остальные полноразмерные.

Фазовый регулятор мощности с управлением на МК

Алгоритм управления микроконтроллером стандартный. В начале настройки:

// настройка таймеров и прерываний
TCCR1B | = (1 << WGM12); // Устанавливает таймер1 в режим CTC
OCR1A = 40000; // Устанавливает желаемое значение …
TCCR1B | = (1 << CS10); // Установить таймер с прескалером Fcpu / 1

TCCR0A | = (1 << WGM01); // Устанавливает таймер в режим CTC
OCR0A = 100; // Устанавливает желаемое значение 10000 Гц для прескалера 8
// TCCR0B | = (1 << CS01); // Установить таймер с помощью прескалера Fcpu / 8

TIMSK | = (1 << OCIE0A); // Разрешение на отмену CTC для T0
TIMSK | = (1 << OCIE1A); // Разрешение на отмену CTC для T1

// MCUCR | = _BV (ISC00); // включить генерацию прерываний с помощью
MCUCR | = _BV (ISC01);
GIMSK | = (1 << INT0); // включить поддержку прерываний Int0

TRIAK_OFF ();
_delay_ms (500);
(SEI);

T1 от мультиплексирования и T0 от вычисления задержки. Хорошо видно, что его прерывание происходит не каждые 100 тактов / 8 или каждые 100 мкс. Далее прерывание от INT0 – синхронизация:

ISR (INT0_vect)
<
GTCCR | = _BV (PSR10); // сбросить таймер прескалера

TCNT0 = 0; // сбросить таймер
START_TIMER0; // запускаем таймер 0
TRIAK_OFF (); //

Удаление импульсов запускает:

counter_10ms ++;
// дополнительные плюсы – мигающая точка:
if (counter_10ms% 50 == 0) second =

second;
// обратный отсчет до сна
if (counter_10ms> = 6000)
<
counter_minutes ++;
counter_10ms = 0;
>
>

И для правильной работы регулировки фазы рассчитывается задержка переключения симистора:

ISR (TIMER0_COMPA_vect)
<
counter_100_us ++;
if (counter_100_us> = заданное значение)
<
STOP_TIMER0; // остановить таймер 0
TRIAK_ON;
_delay_us (20);
TRIAK_OFF ();
counter_100_us = 0;
>
>

Фазовый регулятор мощности с управлением на МК

Схема вполне широко используется. От регулирования мощности паяльника, до яркости лампочек или мощности нагрева разных нагревателей (будет необходим конечно радиатор), или скорости вращения дрели и подобных устройств.

Фазовый регулятор мощности с управлением на МК

Кроме того, после замены 3-х резисторов он может регулировать мощность нагрева низковольтного паяльника (до 24 В) или даже работать в качестве простого регулятора однофазного сварочного аппарата.

Симисторный регулятор мощности, схема на КР1182ПМ1

Большое количество нагрузок требуют регулирования мощности, например такие:

  • лампы накаливания или любые другие диммируемые;
  • нагреватели;
  • коллекторные электродвигатели и в частности электроинструмент.

Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то
с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.

Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.

graf_simist

Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.

sim_reg_simple

Таблица номиналов элементов

  • C1 – 0,1 мк;
  • R1 – переменный резистор 470 кОм;
  • R2 – 10 кОм;
  • VS1 – DB3;
  • VS2 – BTA225-800B.

При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А.
Удивительно, но схема содержит всего 5 элементов:
R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.

КР1182ПМ1

Отечественная промышленность выпускает специальную микросхему – фазовый регулятор КР1182ПМ1. Эта микросхема позволяет осуществлять фазовое регулирование как самостоятельно, при низких мощностях нагрузки до 150 Вт, так и совместно с тиристорами или симисторами при больших мощностях.

KR1182PM1_struct

Внутренняя структура микросхемы КР1182ПМ1.

Микросхема предназначена для работы в диапазоне напряжений 80 – 276 В, тока до 1,2 А, мощности до 150 Вт и диапазоне температур от -40 до 70 гр. Цельсия.

Применение КР1182ПМ1 позволяет добиться высокой повторяемости скорости нарастания и спада напряжения.

sim_reg_mosh

Таблица номиналов элементов

  • C1 – 47 мкФ 10В;
  • C2, С3 – 1 мкФ 6,3 В;
  • DA1 – КР1182ПМ1;
  • R1 – переменный резистор 68 кОм;
  • R2 – 470 Ом;
  • S1 – кнопка выключения;
  • VS1 – BT136-600E.

В приведенной схеме R1 и С1 определяют скорость нарастания выходного напряжения чем больше их значения тем дольше работа режима плавного пуска.
С2 и С3 нужны для работы самой микросхемы и должны быть тем больше чем больший ток коммутирует микросхема.
R2 – ограничивает ток через симистор VS1.

Но есть и недостатки у фазового регулятора мощности – помехи которые могут генерироваться в сеть при больших мощностях. На некоторых видах нагрузки, например нагреватели или двигатели с большим моментом инерции допустимо использовать и другие виды регулировки, например пропускать или не пропускать целые полупериоды или периоды сетевого напряжения. Преимущества данного способов в переключении тиристора в момент нулевых напряжений и токов. Однако управление таким способом более сложное и скорее всего потребует применение микроконтроллера.

22 thoughts on “ Симисторный регулятор мощности, схема на КР1182ПМ1 ”

Микросхема КР1182ПМ1 описание. Кстати полных зарубежных аналогов нету, разработка и выпуск отечественного ЗАО «НТЦ СИТ».

В маломощных (до 200 — 300 Вт) регуляторах лучше использовать транзисторные, а не симисторные схемы. Они не искажают форму сигнала (изменяется амплитуда, а не фаза) поэтому избавлены от помех.

Для прямого изменения амплитуды сетевого напряжения в регуляторах на транзисторах, уже при 50 ваттной нагрузке потребуется огромный радиатор.
Импульсные источники питания на транзисторах намного сложнее симисторных, и включают в себя преобразователь частоты, тоже создающий помехи, которые затем необходимо подавлять дополнительными фильтрами.
Симисторные регуляторы обладают высоким КПД, и часто работают вообще без радиаторов, они компактны и легки в регулировке.
Их особенно выгодно применять на повышенных мощностях, где коммутируются большие токи, например в сварочных аппаратах.
Что касается применения КР1182ПМ1, то если в самой нижней схеме R1 заменить на постоянный в 1М, и параллельно ему добавить фототранзистор, например КТФ102, то совместно с лампой можно получить автоматический регулятор освещения.

Ну, лампочке, к примеру, форма сигнала до лампочки, уж простите за каламбур. А чем меньше потребляемая мощность, тем меньше и помехи наводимые в сети. Двигатели электроинструмента и сами являются источниками помех, даже без регуляции. Так что вопрос целесообразности применения зависит больше от свойств нагрузки, а не от мощности.
В любом случае, будущее данного направления за частотными преобразователями, а не за фазовыми. Там и с КПД и с формой сигнала все хорошо… с ценой только плохо. Настолько плохо, что используются пока только в промышленности. В быту очень редко.

Цена сейчас определяющий фактор. Для мощных нагрузок симисторы дешевле, чем транзисторы и проще. Управление ими проще. Чаще всё равно требуется управлять двигателями или регулировать температуру. Помехи критичны в специализированной аппаратуре.

Собирал данную схему на панели для монтажа , что то не так сначала скачек напряжения до 80 вольт далее моментальное его падение до нуля и все…В чем проблемам может быть? в нагрузке была лампа на 60 ватт

Вход перепутан с выходом

При использовании транзисторов необходимы большие радиаторы, что делает схему громоздкой.

Ошибка в схеме. При подключении симистора перепутаны T1 и T2.

Ошибка в схеме. Плюс конденсатора С2 должен быть присоединен к 16-му выводу микросхемы.

данную схему собрал на зарубежном аналоге, как раз таки не создающем никаких помех (Недоработка нашего производителя)

Подскажите,пожалуйста,марку зарубежного аналога.

Анплогов нет. м.д. немножко пофантазировал

Здравствуйте коллеги! Ох и намучался я со схемой собранной по последнему рисунку (с микросхемой и симмистром ВТ136)… И так и сяк и нагрузку с другого плеча и резистор в цепь 9,10,11 ножек… И на другой микросхеме и симмистр менять пробовал… В нуле переменника горит в пол накала, потом сразу в полный при небольшом повороте. Всё наладилось когда взял симмистр другой — ВТА140. Сразу всё наладилась — и глубина регулировки и плавность… У кого-то получилось использовать в этой схеме ВТ136?

ВТ136 вроде тиристор, а не симистор. См. даташит. Жж

Падение напряжения недопустимо высоко ? на нагрузке 170в при 215в в сети

Попробовал эту схему c симисторjv ВТВ12-600. Нагрузка — двигатель от электрорубанка.
Первое — симистор на схере неправильно включен. Нужно перевернуть его вверх тормашками.
Во вторых горит резистор R2. Быстро обугливается. резистор 0.5 Вт

Собирайте по даташиту там указаны все штатные схемы включения и будет Вам счастье собирал устройсво плавного пуска все хорошо

Переделал 12в шуруповёрт для работы от сети. Подключаю к самодельному зарядному 14.5в. Работает аж свистит. Нашёл в инете, что можно снизить напряжение диодом. Подскажите модель или х-ки диода. Сам что-то не могу выбрать.

Убогое подключение,так нельзя

Микросхемы КР1182ПМ1 допускают параллельное включение двух и более приборов, что позволяет увеличить выходную мощность регулятора. Устройство, схема которого изображена на рис. 4, может работать с нагрузкой, мощностью до 300 Вт.

Читайте также  Чертежи ящика для инструментов
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector