АЦЕТИЛЕН
АЦЕТИЛЕН (этин) – углеводород состава С2Н2, содержащий тройную углерод-углеродную связь. Название этого соединения уже более ста лет знакомо не только химикам. С конца 19 в., когда был разработан дешевый способ получения ацетилена из карбида кальция (СаС2 + 2Н2О ® С2Н2 + Са(ОН)2), этот газ стали использовать для освещения. В пламени при высокой температуре ацетилен, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени – от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому). Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.
Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К2С2 + Н2О ® С2Н2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Он был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С2Н3 ацетилом. На латыни acetum – уксус; молекула уксусной кислоты (С2Н3О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С2Н3 – Н ® С2Н2. (Сейчас ацетилом называют группировку СН3СО; она входит в состав солей уксусной кислоты – ацетатов, а также ацетона СН3СО–СН3, ацетальдегида СН3СО–Н, ацетилхлорида СН3СО–Cl и многих других соединений.)
Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами, а в 1867 сделал очень важное для химической теории открытие: показал, что из трех молекул ацетилена можно получить молекулу бензола: 3С2Н2 ® С6Н6.
Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С ® СаС2 + СО. В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина РН3, арсина AsH3. Сейчас широко применяются методы получения ацетилена из природного газа – метана: электрокрекинг 2СН4 ® С2Н2 + 3Н2 (струю метана пропускают между электродами при температуре 1600° С и быстро охлаждают, чтобы предотвратить разложение ацетилена); термоокислительный крекинг (неполное окисление) 6СН4 + 4О2 ® С2Н2 + 8Н2 + 3СО + СО2 + 3Н2О (в реакции используют теплоту частичного сгорания ацетилена).
Чистый ацетилен при охлаждении сжижается при –83,8° С, а при дальнейшем понижении температуры быстро затвердевает. Он умеренно растворим в воде (1150 мл в 1 л воды при 15° С и атмосферном давлении) и хорошо в органических растворителях, особенно в ацетоне (25 л в 1 л ацетона при тех же условиях и 300 л под давлением 12 атм). Термодинамически ацетилен неустойчив; он взрывается при нагревании до 500° С, а при обычной температуре – при повышении давления до 2 атм. Поэтому его хранят в баллонах, наполненных пористым инертным материалом, который пропитан ацетоном.
Ацетилен используют для так называемой автогенной сварки и резки металлов. Для этого нужны два баллона с газами – с кислородом (он окрашен в голубой цвет) и с ацетиленом (белого цвета). Газы из баллонов поступают в специальную горелку. Еще в 1895 году было обнаружено, что при сгорании ацетилена в кислороде получается очень горячее пламя; максимальная его температура (3150° С) достигается при содержании ацетилена 45% по объему. В таком пламени очень быстро расплавляются даже толстые куски стали.
Химия ацетилена впервые была детально изучена в работах академика А.Е.Фаворского (1860–1945). Оказалось, что ацетилен может служить исходным продуктом для синтеза многих более сложных органических соединений. Эта область применения ацетилена в настоящее время является самой обширной. Ацетилен – реакционноспособное соединение, вступающее в многочисленные реакции. В 1881 М.Г.Кучеров открыл реакцию присоединения к ацетилену воды в присутствии катализатора – солей ртути, при этом образуется ацетальдегид: С2Н2 + Н2О ® СН3СНО. Из ацетальдегида далее получают уксусную кислоту, ацетон, спирт.
В 1949 немецкий химик В.Ю.Реппе открыл важную реакцию карбонилирования (присоединения СО) ацетилена в присутствии никелевого катализатора: С2Н2 + СО + Н2О ® СН2=СН–СООН. Образующаяся в этой реакции непредельная акриловая кислота используется для получения разнообразных полимеров – акрилатов (к ним относится и органическое стекло – полиметилметакрилат). А присоединение к ацетилену синильной кислоты дает другой важнейший продукт – нитрил акриловой кислоты (акрилонитрил): C2H2 + HCN ® CH2=CH–CN. Его полимеризацией получают очень важные полиакрилонитрильные полимеры, из которых делают искусственные волокна, пластики, каучуки.
Галогены и гидрогалогены (последние – в присутствии катализаторов) легко присоединяются к ацетилену с образованием сначала замещенных этилена, затем – этана, например: HCєCH + Cl2 ® ClCH=CHCl, ClCH=CHCl + Cl2 ® CHCl2–CHCl2; HCєCH + HCl ® CH2=CHCl, CH2=CHCl + HCl ® CH3–CHCl2 (последние две реакции идут по правилу Марковникова). Образующиеся хлорпроизводные широко используются в качестве полупродуктов для дальнейших синтезов, а также как растворители (например, в химчистке).
Ацетилен является слабой кислотой, в присутствии сильных оснований возможна ионизация этой связи с образованием ацетиленид-иона НєС–С – . Возможна ионизация и второй связи С–Н, поэтому при пропускании ацетилена в аммиачные растворы солей серебра и меди(I) образуются белый ацетиленид серебра C2Ag2 и красно-бурый ацетиленид меди C2Cu2. Оба соединения нерастворимы и выпадают в осадок; в сухом виде они они являются взрывчатыми веществами. Карбид кальция СаС2 также можно рассматривать как ацетиленид. Эти солеобразные соединения имеют ионную кристаллическую решетку, в узлах которой находятся катионы металла и анионы С2 2– .
В кислой среде в присутствии ионов Cu + ацетилен димеризуется с образованием винилацетилена НСєС–СН=СН2.
При его полимеризации образуются продукты, которые используются в производстве лакокрасочных материаловю – винил- и дидивинилацетиленовых лаков.
Приведенные примеры далеко не исчерпывают богатую химию ацетилена, из которого можно получить сотни разнообразных соединений. Недаром его годовое производство превышает 5 млн тонн. Из них примерно 70% используют для промышленного органического синтеза, а 30% – для сварки и резки металлов.
Ацетилен C2H2
Ацетилен — это химическое вещество, углеводород, простейший алкин, имеющий химическую формулу C2H2 (C2H2), с температурой точки кипения -84°C, молярной массой 26,04 г/моль. При атмосферных условиях, ацетилен представляет собой бесцветный газ с плотностью при +20°C и абсолютном давлении 1 бар 1,097 кг/м³ (легче воздуха), плотностью при 0°C 1,1716 кг/м³, без запаха (известный запах чеснока присутствует у применяющегося в промышленности и непромышленных нелабораторных применениях ацетилена из-за примесей фосфора и сульфида водорода). Газ ацетилен мало растворим в воде, но легко растворим в ацетоне и этиловом спирте.
Реакции ацетилена
Ацетилен горит в концентрации в воздухе от 2,5% до 80% (и почти до 100% при определенных условиях; при концентрации 100% и совпадении некоторых условий, ацетилен может бурно, со взрывом, саморазложиться на углерод и водород), с образованием очень горячего, яркого и дымного пламени. Температура горения ацетилена в воздухе или кислороде может достигать 3300°C.
В реакциях с такими металлами, как медь, серебро и ртуть, а также их сплавами и солями, ацетилен образует ацетилениды. Например, нитрат серебра реагирует с ацетиленом с образованием ацетиленида серебра и азотной кислоты:
2AgNO3 + C2H2 → Ag2C2 + 2HNO3
Некоторые ацетилениды, и вышеупомянутый ацетиленид серебра Ag2C2 в том числе, являются сильными и опасными в обращении взрывчатыми веществами, детонирующими при нагревании, а также от ударного воздействия. Известны случаи, когда ацетиленид серебра образовывался на стыках труб для транспортировки ацетилена, при пайке которых использовался серебряный припой.
Немецкий химик Вальтер Реппе открыл, что в присутствии металлических катализаторов ацетилен может реагировать со многими веществами, образуя промышленно значимые химические соединения. Эти реакции теперь называют его именем, реакциями Реппе.
Реакции ацетилена C2H2 со спиртами ROH, синильной кислотой HCN, соляной кислотой HCl или карбоновыми кислотами дают соединения винила. Например, ацетилен и соляная кислота:
C2H2 + HCl →
Реакция этилена с монооксидом углерода дает акриловую кислоту или акриловые эфиры, используемые при изготовлении органического стекла:
C2H2 + CO + H2O → CH2=CHCO2H
Реакция циклизации позволяет конвертировать ацетилен в бензол:
3C2H2 → C6H6
Получение ацетилена
В-основном, ацетилен получают путем неполного сгорания метана или как побочный и нежелательный продукт при получении этилена методом крэкинга углеводородов (частично этот нежелательный ацетилен каталитически гидрогенезируют в этилен). Ежегодное производство ацетилена последним способом составляет примерно 400000 тонн.
До 50х годов XX века, когда нефть заменила уголь как источник углерода, ацетилен являлся одним из основных видов сырья в химической промышленности. Тогда (и до сих пор в лабораторных условиях) ацетилен производился путем гидролиза карбида кальция:
CaC2 + 2H2O → Ca(OH)2 + C2H2
Баллоны с ацетиленом
Баллоны с газами, в т.ч. ацетиленом. Нажмите для увеличения.
Ацетилен можно сжижать и отверждать, однако как в газообразном состоянии при давлении свыше примерно 7 бар, так и в жидком, и в твердом состоянии ацетилен чувствителен к ударному воздействию и взрывоопасен. Поэтому, ацетилен всегда поставляется пользователям в баллонах, растворенным в ацетоне или диметилформамиде и полностью заполненных пористым напонителем Agamassan (или AGA-massan, что расшифровывается в переводе со шведского как «состав AGA». AGA — это название шведской компании-производителя и поставщика промышленных газов, ныне подразделения компании Linde Gas, основанной в свое время изобретателем Agamassan’а Густафом Даленом. В состав Agamassan’а входя асбест, цемент, уголь и кизельгур). Как альтернатива Agamassan’у, может использоваться наполнитель на основе кизельгура или керамики/силикатной извести.
Избыточное давление в ацетиленовых баллонах составляет обычно не более 17 бар, а давление выхода из баллона — не более 1 бара, а обычно порядка 0,5 бара.
Ацетиленовые баллоны обычно снабжены как обычными предохранительными клапанами, срабатывающими при повышении давления, в том числе проходящем и изотермически, так и особыми предохранительными клапанами, срабатывающими при повышении температуры до уровня выше 100°C, выпуская ацетилен в атмосферу. Такие клапаны действуют, как плавкие вставки.
В России, ацетиленовые баллоны окрашены в белый цвет, с красной надписью «Aцетилен».
Использование ацетилена
Баллоны с газами, в т.ч. ацетиленом. Нажмите для увеличения.
Наиболее известной областью использования ацетилена является кислородно-ацетиленовая сварка. Также широко распространена кислородно-ацетиленовая резка металлов. Оба использования обусловлены чрезвычайно высокой температурой горения ацетилена. Для этих целей расходуется примерно 20% промышленно производимого в мире ацетилена. Однако, использование ацетиленовой сварки постепенно снижается по причине роста популярности электрической дуговой сварки — резка ацетиленом с кислородом, однако, остается все так же распространена.
В химической промышленности, ацетилен используется в синтезе многих органических соединений, таких как ацетальдегид и уксусная кислота.
Среди устаревших применений можно назвать использование ацетилена в качестве источника света (т.н. карбидные лампы, в которых карбид кальция CaC2 выделял ацетилен при реакции с водой, и ацетилен сжигался, использовались, например, как фары во всех первых автомобилях).
Ацетилен использовался раньше в качестве средства для общей анестезии. При этом, можно отметить, что при обращении с ацетиленом обычно не стоит особенно опасаться его физиологического воздействия: прежде, чем концентрация ацетилена во вдыхаемом воздухе достигнет опасных пределов, будет уже давно превышен нижний порог горючести (напомним, это 2,5%) — что представляет значительно более серьезную опасность.
Ацетилен — газ с самой высокой температурой пламени!
Ацетилен химическое соединение углерода и водорода. Ацетилен легче воздуха, 1 м 3 при 20°С и 760 мм рт. ст. имеет массу 1,091 кг/м 3 . Плотность по отношению к воздуху 0,9. Критическая температура 35,9°С и критическое давление 61,6 кгс/см 2 . При сгорании с кислородом он дает пламя с наиболее высокой температурой, которая достигает 3200°С, что объясняется его эндотермичностью (другие углеводороды экзотермичны, т. е. при распаде поглощают тепло). Химическая формула — C2H2, структурная формула Н-С=С-Н.
Содержание
При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м 3 . Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.
История получения ацетилена
В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:
Дэви получил карбид калия К2С2 и обработал его водой.
В статье о получении карбида кальция мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.
Получение ацетилена
Получение ацетилена производится двумя основными способами:
- в результате реакции карбида кальция и воды
- из метана путем сжигания в смеси с кислородом в специальных реакторах при температуре 1300-1500°C
А вот какой способ сейчас более распространён можно узнать из статьи о получении ацетилена.
Применение ацетилена
Применение ацетилена при газовой сварке обусловлено тем, что у него самая большая температуры горения. Но он также нашел свое применение в химической отрасли для получения пластмасс, синтетического каучука, уксусной кислоты и растворителей. Более подробный ответ по данному вопросу можно найти в статье о применении ацетилена.
Горение ацетилена
Для полного сгорания 1 м 3 ацетилена по вышеуказанной реакции теоретически требуется 2,5 м 3 кислорода или = 11,905 м 3 воздуха. При этом выделяется тепло Q1 ? 312 ккал/моль. Высшая теплотворная способность 1 м 3 С2Н2 при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет QВ = 14000 ккал/м 3 (58660 кДж/м 3 ), что соответствует расчетной:
312?1,1709?1000/26,036 = 14000 ккал/м 3
Низшая теплотворная способность при тех же условиях может быть принята QH = 13500 ккал/м 3 (55890 кДж/м 3 ).
Практически для горения в горелках при восстановительном пламени в горелку подается не 2,5 м 3 кислорода на 1 м 3 ацетилена, а всего лишь от 1 до 1,2 м 3 , что примерно соответствует неполному сгоранию по реакции:
где Q2 ? 60 ккал/моль или 2300 ккал/кгС2H2. Остальные 1,5-1,3 м 3 кислорода поступают в пламя из окружающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:
Реакция неполного горения ацетилена протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад С2Н2 на его составляющие по реакции:
где Q4?54 ккал/моль или 2070 ккал/кг С2H2.
Таким образом, общая полезная теплопроизводительность пламени применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде С2Н2, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370?1,1709 ? 5120 ккал/м 3 .
При содержании С2Н2 в смеси около 45% (т. е. при отношении кислорода к ацетилену, примерно равном 1,25) достигается максимальная температура горения ацетилена, которая составляет 3200°С.
При содержании 27% С2Н2 достигается максимальная скорость воспламенения ацетилено-кислородной смеси, которая равна 13,5 м/сек.
Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.
Содержание С2Н2 в смеси в объемных процентах | 12 | 15 | 20 | 25 | 27 | 30 | 32 | 35 | 40 | 45 | 50 | 55 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Максимальная температура горения ацетилена, °С | — | 2920 | 2940 | 2960 | 2970 | 2990 | 3010 | 3060 | 3140 | 3200 | 3070 | 2840 |
Скорость воспламенения смеси, м/сек | 8,0 | 10,0 | 11,8 | 13,3 | 13,5 | 13,1 | 12,5 | 11,3 | 9,3 | 7,8 | 6,7 | — |
Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1?100/(1+11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только углекислый газ (СО2) и вода (H2О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.
С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% С2Н2 — процесс горения прекращается или не возникает.
Хранение и транспортировка ацетилена
Ацетилен выпускают по ГОСТ 5457 растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных баллонах по ГОСТ 949, заполненных пористой, пропитанной ацетоном массой. Ацетилен, растворенный в ацетоне не склонен к взрывчатому распаду.
Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части.
Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см 2 ), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см 2 ). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг С2Н2 по массе (4,6-5,3 м 3 газа при 20°С и 760 мм рт. ст.).
Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом:
Температура, °С | -5 | 5 | 10 | 15 | 20 | 30 | 40 | |
---|---|---|---|---|---|---|---|---|
Давление, МПа | 1,3 | 1,4 | 14 | 1,7 | 1,8 | 12 | 2,4 | 3,0 |
Другие требования техники безопасности можно узнать из статьи о классе опасности и мерах безопасности при работе с ацетиленом
Физические свойства ацетилена
Физические свойства ацетилена представлены в таблицах ниже.
Коэффициенты перевода объема и массы С2Н2 при Т=15°С и Р=0,1 МПа
Масса, кг | Объем газа, м 3 |
---|---|
1,109 | 1 |
1 | 0,909 |
Коэффициенты перевода объема и массы С2Н2 при Т=0°С и Р=0,1 МПа
Масса, кг | Объем газа, м 3 |
---|---|
1,176 | 1 |
1 | 0,850 |
Ацетилен в баллоне
Наименование | Объем баллона, л | Масса газа в баллоне, кг | Объем газа (м 3 ) при Т=15°С, Р=0,1 МПа |
---|---|---|---|
С2Н2 | 40 | 5 | 4,545 |
Благодаря информации в таблице можно дать ответы на часто задаваемые вопросы:
Ацетилен
Для газопламенных работ необходимо осуществить передачу тепла из пламени в металл в количестве, достаточном для конкретных условий работ. Горючие газы сгорают, как правило, в смеси с кислородом. Наибольшей температурой обладает ацетилено-кислородное пламя (3200°С), что позволяет использовать ацетилен при любых видах газопламенной обработки металлов. Интенсивность горения пламени определяется произведением нормальной скорости горения на теплоту сгорания смеси. Ацетилен обладает наивысшей «интенсивностью горения», которая для смеси стехиометрического состава составляет 27 700 ккал/(м 2 *с).
Ацетилен
Ацетилен относится к группе непредельных углеводородов ряда СnН2n-2.. Это бесцветный горючий газ со специфическим запахом; благодаря наличию в нем примесей – фосфористого водорода, сероводорода и пр. плотность ацетилена при 20°С и 760 мм рт. ст. равна 1,091 кг/м 3 ; при 0°С и 760 мм рт. ст. – – плотность 1,171 кг/м 3 . Ацетилен легче воздуха; плотность по сравнению с плотностью воздуха 0,9; молекулярная масса 26,038. Критическая точка для ацетилена характеризуется давлением насыщенного пара, равным 61,65 кгс/см 2 , и температурой 35,54°С. При 760 мм рт. ст. и температуре –84°С ацетилен переходит в жидкое состояние, при температуре –85°С – затвердевает.
Ацетилен – единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей. Ацетилен высокоэндотермическое соединение; при разложении 1 кг ацетилена выделяется более 2000 ккал, т. е. примерно в 2 раза больше, чем при взрыве 1 кг твердого ВВ тротила. Температура самовоспламенения ацетилена колеблется в пределах 500 – 600°С при давлении 2 кгс/см 2 и заметно снижается с увеличением давления; так, при давлении 22 кгс/см 2 температура самовоспламенения ацетилена равна 350°С, а при наличии катализаторов, таких, как железный порошок, силикагель, активный уголь и др. разложение ацетилена начинается при 280 – 300°С. Присутствие окиси меди снижает температуру самовоспламенения до 246°С. При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения; поэтому при изготовлении ацетиленового оборудования запрещается применять сплавы, содержащие более 70% Cu.
Взрывчатый распад ацетилена, как правило, начинается при интенсивном нагреве со скоростью 100 – 500°С/с. При медленном нагреве происходит реакция полимеризации ацетилена, идущая с выделением тепла, которая, как правило, при температуре свыше 530°С влечет за собой взрывчатый распад ацетилена. Нижнее предельное давление, при котором возможно разложение ацетилена, равно 0,65 кгс/см 2 . Пределы взрываемости для ацетилена широки (табл. 2). Наиболее опасными являются смеси ацетилена с кислородом стехиометрического состава (
30%). Скорости распространения пламени и детонации достигают наибольшего значения при соотношении ацетилена и кислорода 1:2,5 и соответственно равны 13,5 и 2400 м/с при нормальных условиях. Давление, образующееся при взрыве ацетилена, зависит от начальных параметров и характера взрыва. Оно может возрасти примерно в 10 – 12 раз по сравнению с начальным при взрыве в небольших сосудах и может быть увеличено в 22 раза при детонации чистого ацетилена и в 50 раз при детонации ацетилено-кислородной смеси.
При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии при получении его в переносных или стационарных ацетиленовых генераторах, либо в растворенном состоянии. Растворенный ацетилен представляет собой раствор ацетилена в ацетоне, распределенный равномерно в пористом наполнителе под давлением. Растворимость ацетилена зависит от температуры и давления. Пористая масса в баллоне обеспечивает рассосредоточение ацетилена по всему объему и локализацию взрывчатого распада ацетилена. При отсутствии пористой массы в баллоне инициированный взрывной распад ацетилена, растворенного в ацетоне, происходит при давлении ниже 5 кгс/см 2 . В качестве пористых наполнителей могут быть использованы не только насыпные пористые массы, но и литые пористые массы, которые нашли применение за рубежом.
Физико-химические показатели газообразного и растворенного технического ацетилена оговорены ГОСТ 5457 – 75. По содержанию допустимого количества примесей различают ацетилен растворенный, растворенный и газообразный; допустимое содержание примесей (в объемных долях) соответственно равно:
- воздуха и других малорастворимых в воде газов – не более 0,9, 1,0, 1,5;
- фосфористого водорода – 0,01; 0,04; 0,08;
- сероводорода – 0,005; 0,05; 0,15;
- водяных паров при 20°С и 760 мм рт. ст. – 0,5; 0,6.
Технический растворенный ацетилен транспортируют в стальных баллонах. Допустимое максимальное давление в баллонах не должно вревышать 13,4 кгс/см 2 при температуре –5°С и давлении 760 мм рт. ст. и 30 кгс/см 2 при температуре+40°С и давлении 760 мм рт. ст. Остаточное давление в баллоне при тех же параметрах не должно быть меньше соответственно 0,5 и З,0 кгс/см 2 .
Для газопламенной обработки металлов, наряду с ацетиленом, полученным из карбида кальция, применяют пиролизный ацетилен, получаемый из природного газа термоокислительным пиролизом метана с кислородом. Пиролизный ацетилен также хранят и транспортируют в баллонах в растворенном виде. Наполнитель и растворитель для пиролизного ацетилена тот же, что и для ацетилена из карбида кальция.
При применении растворенного ацетилена по сравнению с газообразным обеспечиваются наибольший коэффициент использования карбида, чистота рабочего места сварщика, устойчивая работа аппаратуры и безопасность в работе. Основным сырьем для получения ацетилена, используемого при газопламенной обработке металлов, является карбид кальция. Карбид кальция получают в электрических печах при взаимодействии обожженной извести с коксом или антрацитом. Расплавленный карбид кальция разливают в изложницы, где он застывает; затем его дробят в кусковых дробилках и сортируют по размерам кусков согласно ГОСТ 1460. Ацетилен получают в результате разложения (гидролиза) карбида кальция водой. Действительный «литраж» ацетилена из 1 кг технического карбида при 20°С и 760 мм рт. ст. не превышает 285 л и зависит от грануляции карбида. С увеличением размеров кусков карбида «литраж» увеличивается, однако скорость разложения его уменьшается, т. е. увеличивается длительность разложения карбида (табл. 1).
Содержание фосфористого водорода в ацетилене по объему не более 0,08%, содержание сульфидной серы не более 1,2%. В ГОСТ 1460 оговаривается также допустимое количество кусков карбида кальция других размеров в партиях указанной грануляции. Большой тепловой эффект реакции разложения карбида создает опасность сильного перегрева. Без отвода тепла при взаимодействии стехиометрического количества карбида кальция и воды реакционная масса разогревается до 700 – 800°С. Разложение карбида при недостаточном охлаждении и особенно в присутствии воздуха может привести к взрыву, поэтому необходимо процесс осуществлять при значительном избытке воды. Для разложения 1 кг карбида необходимо 5 – 20 л воды. Особое внимание необходимо обращать на наличие карбидной пыли в карбиде. Пыль разлагается почти мгновенно; за счет мгновенного разогрева может возникнуть взрыв ацетилена. Поэтому переработка пыли в обычных генераторах, не приспособленных для использования пыли, не допускается. Если содержание пыли значительно, карбид кальция перед загрузкой в генератор просеивают через сито с ячейками диаметром 2 мм. Накопившуюся пыль следует разложить на открытом воздухе в специальном сосуде вместимостью не менее 800 – 1000 л при интенсивном помешивании, одновременно высыпая не более 250 г карбидной пыли. Воду следует менять после разложения пыли в количестве до 100 кг.
Карбид кальция транспортируют и хранят в железных барабанах с толщиной стенки не менее 0,51 мм и массой 50 – 130 кг. Боковую поверхность барабанов делают гофрированной для большей жесткости. Карбид кальция интенсивно поглощает влагу даже из воздуха, поэтому при плохой герметичности тары возможно образование ацетилена непосредственно в барабане. Герметичность барабанов следует тщательно проверять; при перевозке барабанов на открытых машинах необходимо покрывать барабаны брезентом. При обнаружении повреждения барабана, карбид должен быть пересыпан в другую герметичную тару.
При обслуживании стационарных генераторов карбид из барабанов пересыпают в специальные приемники-бункеры. Вскрытие барабанов на станции, как правило, механизировано. Для этих целей применяют станки, в которых верхняя крышка вырезается специальным режущим роликом или клиновыми ножами. Ножи и ролик изготовляют из неискрящегося материала. Кроме того, к месту реза подается масло или азот.
Транспортировка карбида кальция в барабанах для стационарных генераторов производительностью свыше 20 м 3 /ч экономически не оправдана, так как раскупорка барабанов занимает значительное время; накапливается большое количество порожней тары, которая вторично не может быть использована; потери карбида за счет его дробления при перекатывании барабанов и последующего отсева от пыли значительны. Поэтому можно считать наиболее перспективным контейнерный способ перевозки и хранения карбида для стационарных установок. При газопламенной обработке алюминия, латуни, свинца и других металлов, имеющих температуру плавления ниже температуры плавления стали, в качестве горючего газа целесообразно применять не ацетилен, а газы – заменители ацетилена или жидкие горючие. Основные физические и тепловые свойства горючих газов приведены в табл. 2.