7812 Характеристики схема подключения

Разница между лазерной и плазменной резкой металла Температура резки металлов – 900°C. Примерно при такой температуре металлы, которые режутся таким методом, переходят в газообразное состояние, либо близки к нему. Плазменная резка металлов. Плазменная резка металлов– резка с использованием плазмы.

7812 Характеристики схема подключения

Крен 7812 схема включения

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Как выбрать радиатор? Выделяемая на силовом транзисторе мощность приблизительно равна:

P=(Uвход-Uвыход)*Iнагр

Тогда приблизительно каждый ватт тепла необходимо рассеить на 10см2 охлаждающей поверхности.

Сам стабилизатор L7812 устанавливается на тот-же радиатор или на отдельный, по площади приблительно в 30 раз меньшей, чем у Q1.

Какой выбрать максимальный ток полученного стабилизатора? Здесь все зависит от тока, который вам нужен. Это должен быть такой ток, который не выходил бы за пределы допустимого для Q1. Предположим максимальный ток 3А. Падение напряжения на резисторе R1 — 0.6В. Тогда:

Рассеиваемая им мощность: P=(Uпад^2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Этот стабилизатор размещен в корпусе ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Микросхемы стабилизаторы напряжения. Главная ошибка при использовании.

В данной статье рассказано как правильно использовать характеристики микросхем линейных стабилизаторов напряжения 7805,7808,7812 и аналогичных КР142ЕН5,8,12.

Самые распространенные микросхемы, которые применяются в блоках питания различных устройств. Такое широкое распространение получили ввиду предельно простой схемы подключения и довольно хороших параметров при правильном использовании. Основная схема подключения выглядит так:

Микросхемы стабилизаторы напряжения выпускаются разной мощности:

Обозначения на микросхеме:

Корпуса микросхем в зависимости от мощности тоже разные:

Микросхемы стабилизаторы напряжения большой мощности выпускают на выходные напряжения от 5В до 24В:

При этом входные напряжения и температурные характеристики такие:

Характеристики для микросхем средней мощности такие:

И для микросхем малой мощности соответственно такие:

При этом ряд напряжений на выходе для микросхем малой мощности выглядит так:

3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 Вольта

Какие же параметры для микросхем стабилизаторов напряжения в основном приводят в интернете? Рассмотрим наиболее распространенные случаи на конкретном примере:

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка, тем больше нужна площадь охлаждаемой поверхности.
Производят в основном в корпусе ТО-220
Максимальный ток нагрузки: 1.5 В
Допустимое входное напряжение: 35 В
Выходное напряжение: 5 В
Число регуляторов в корпусе: 1
Ток потребления: 6 мА
Погрешность: 4 %
Диапазон рабочих температур: 0 C … +140 C
Отечественный аналог КР142ЕН5А

Казалось, бы, все выписано из документации (DataSheet). Как человек воспринимает такую информацию. Наибольшее напряжение 35 В, хорошо, я не буду брать предел, возьму 30В. Максимальный ток нагрузки 1,5 А. Не буду брать предельное значение, возьму 1 А. Собирает схему по этим данным, а она, проработав некоторое время выходит из строя. Некоторые не понимают, грешат на качество микросхем. Ведь не заставлял работать микросхему на предельных значениях напряжения и тока, а она вышла из строя.

А все дело в том, что многие забывают о главном параметре, который указан в документации, но как-то не привлекает внимание так как напряжение и ток. Это максимальная мощность, которую может рассеивать микросхема стабилизатор. Как правило ее указывают прямо. Например, для мощных микросхем это 1,5 Вт без радиатора и 15 Вт с радиатором.

Что же получается при выбранном токе 1А и максимальном напряжении 30В, например, для микросхемы с выходным напряжением 5В. Поскольку стабилизатор линейный то на микросхеме упадет 30 – 5 = 25 В. При токе 1А мощность, рассеиваемая на микросхеме, составит 1А × 25В = 25Вт. Это почти в два раза больше допустимой мощности с радиатором. Вот она и выходит из строя. Получается, что при входном напряжении 30 В максимальный ток в нагрузке не может превышать 15 Вт : 25 В = 0,6 А.

В таблицах, приведенных выше в этой статье, для микросхем средней мощности без радиатора предельная мощность 1,2 Вт, а с радиатором, 12 Вт. Для микросхем малой мощности установка радиаторов не предусмотрена и максимальная рассеиваемая мощность составляет 0,625 Вт.

Именно мощность является определяющей при выборе предельных значений тока и напряжения.

Для наглядности предельные значения мощности, напряжения и тока для микросхем стабилизаторов напряжения разной мощности сведены в одну таблицу:

Минимальное падение напряжения на микросхеме 2,5В.

Если руководствоваться этим правилом, микросхемы будут работать надежно.

Материал статьи продублирован на видео:

Регулируемый универсальный блок питания

Периодически возникающая потребность запитать всевозможные устройства, имеющие как правило разные требования к величине питающего напряжения, побудило наконец создать универсальный блок питания на нагрузку до 1,5 А. В инете масса схем подобного рода устройств. Я взял за основу одну простую и подходящую для меня на основе стабилизатора LM317, решил несколько доработать ее и воплотить в жизнь. Дело в том, что в этой схеме регулировка выходного напряжения осуществляется переменным резистором 4,7 ком. Собрав схему на макетной плате, я понял, что такая регулировка уж очень неудобна, — очень сложно точно выставить нужное напряжение вращая движок резистора. Слишком большая чувствительность, и любое прикосновение к ручке вызывает значительное изменение напряжения на выходе. Я его заменил на дискретный галетный переключатель вот такого типа:

В результате нужное напряжение выбирается положением этого переключателя, коммутирующего соответствующие постоянные резисторы. Получилась вот такая схема.

Линейный регулируемый стабилизатор LM317 позволяет регулировать напряжения в диапазоне от 1,2 до 35 вольт. Мне нужен был следующий ряд — 1,5; 5; 9; 12; 15в. Это было выполнено путем подбора сопротивлений резисторов соответствующих положению переключателя на напряжения этого ряда. Правда один вывод переключателя я оставил не задействованным ( фактически разрыв в управляющей цепи микросхемы). Это я оставил сознательно (пусть будет), так как в этом положении на выходе появляется входное напряжение за минусом незначительного падения на микросхеме. У меня это — 33 вольта. Может когда пригодится.

Теперь о питании. У меня применен тороидальный трансформатор ТТП-40 с действующим напряжением вторичной обмотки 25в. После входного фильтра (конденсатор С1) напряжение на входе микросхемы 35в. Это почти предел по входному напряжению данного стабилизатора, больше подавать на него не желательно.

При работе микросхемы на нагрузках с низким напряжением на ней выделяется значительное тепло. Поэтому она помещена на ребристый радиатор с площадью поверхности около 300 см2. Но его нужно чем-то охлаждать в закрытом корпусе. Решил поставить вентилятор, не очень злобный, 60х60 мм. Но желательно, чтобы он работал, когда на то есть основания, то есть соответствующая температура радиатора, иначе зачем гонять зря воздух с пылью. Появилась схема управления кулером.

Подстроечным резистором Р1 настраивается температура срабатывания реле на включение вентилятора. Я настроил примерно на 40 градусов по замеру пирометром Fluke. Но питание схемы – 12в. . Значит нужно где-то его брать. После диодной сборки выпрямителя и конденсатора фильтра основной схемы блока питания – 35в. Можно конечно его подать на микросхемный стабилизатор типа L7812 и получить на выходе вожделенные 12в, но в таком режиме стабилизатор будет успешно работать еще и нагревателем воздуха, просаживая на себе эту дельту. Что ж городить и под него ацкий радиатор с гектар? Нет конечно. Нужно делать еще одну обмотку на трансформаторе с выходом примерно 15в.

А это вторая часть моего марлезонского балета. Трансформатор тороидальный и намотать на него очень не просто. Но начнем. Ибо глаза бояться, а руки чешутся.

Для начала нужно определить, сколько витков мотать. Ведь количество витков на первичной обмотке мне не известно. Делаем следующее. Наматываем поверх обмоток 10-20-30 (кто на сколько сподобится) витков любого провода и замеряем напряжение на получившейся новой миниобмотке. Я намотал 10 витков и получил 1, 28в. Следовательно, чтобы получить 15в нужно 15 разделить на 1,28 и умножить на 10. Результат – 117 витков. Это не десять и не двадцать, козьи пляски на лугу гарантированы! Несмотря на предстоящий ужас делаем следующее приспособление, — челнок типа рыбацкого мотовильца.

Его я сделал из того, что было под рукой – вырезал из блистерной упаковки и для жесткости примотал изолентой к получившемуся челноку небольшой гаечный ключ (если бы был ключ рожковый с двух сторон, то можно было бы использовать его в качестве челнока). При этом, когда вырезал ножницами по концам блистерного челнока пазы для укладки провода, я не стал отрезать средние части, а просто их загнул, чтобы было за что закрепить начало провода. Длина челнока по средним вырезам получилась 15 см, то есть 30 см – один виток на челноке. Замерил длину одного витка провода на самом трансформаторе. Пересчитал, сколько витков намотать на челнок, чтобы гарантированно хватило намотать на трансформатор 117 витков плюс запас процентов 5, который как известно, что-то там не трет и не делает и того хуже, прости Господи. Это не сложно. Намотал на челнок необходимую длину провода, Рис.4 ( сечение провода рассчитывается из предполагаемой нагрузки на обмотку и мощности трансформатора, я мотал диаметром 0,4 мм).

И, собственно, закрепив изолентой начало обмотки, начал аккуратно мотать 117 витков. Вот что получилось.

В процессе намотки я решил не доматывать 10 витков, чтобы получить напряжение где-то около 14в, учитывая, что входной фильтр поднимет его до 15-16в, что мне и нужно. Лишние вольты на входе – лишние калории тепла на микросхеме стабилизатора. После намотки закрепил обмотку изолентой, сделал отводы и замерил напряжение – 14,08 вольт. Ок! Не зря старался! Да, забыл. Когда собирал схему, чтобы не искать клеммы Vago ( на фото) дабы соединить щупы тестера и концы обмотки трансформатора, в дурном порыве соединил их зажимами типа «крокодил» от выключенного лабораторного блока питания. Смотрю, что такое?! Напряжение чуть выше 6 вольт и транс начал греться, как конфорка стремительно. Отключил. Секунды чесал репу, а потом догнал, — я же нагрузил его потрохами выключенного лабораторника. Чуть не спалил. Нашел клеммы, соединил, как положено, без дурного фанатизма. Результат на фото. Мораль — никогда не делай быстрее, чем думаешь.

Быстро собрал схему стабилизатора на микросхеме L7812 по типовой схеме его включения, установив на входе электролит 2200 мкф 35в, а на выходе 100 мкф 35в, предварительно на макетной плате, чтобы проверить его работу от новой обмотки. В качестве нагрузки подключил 5 ваттный резистор 51 ом. Ток нагрузки в результате получился 235 мА, что примерно соответствует потреблению вентилятора охлаждения.

Дальше собрал схему стабилизатора питания блока управления вентилятором на плате и установил в корпус устройства, чтобы проверить работу всего в целом. Универсальный блок питания работал штатно. В качестве нагрузки использовался резистор 25 вт 10 ом. На напряжениях от 9 до 15 вольт ток изменялся от 1 до 1,5А в строгом соответствии с законом Ома. L317-я благополучно грелась в своем седалище на радиаторе, но под контролем блока управления кулером, который включал вентилятор при нагреве в зоне микросхемы свыше 40 градусов и отключал его при остывании ниже оного предела с небольшим гистерезисом.

В качестве индикации напряжения и тока я применил цифровой китайский вольтамперметр. Очень удобная фишка. Единственно, что при выставлении переключателя на 1,5в индикация пропадает. Девайс рассчитан на минимальное напряжение 4 в.

Читайте также  Что такое торцевой ключ

Предварительно я откалибровал его на лабораторном блоке питания. Для этого в его схеме предусмотрено два подстроечных резистора.

Хочу обратить внимание на один важный момент касательно тороидальных трансформаторов. В основном они предусматривают их крепление посредством центрального болта и верхней шайбы. Так вот, очень легко создать короткозамкнутый ацкий типа виток, крепя его в стальном или любом корпусе из магнитного материала со всеми вытекающими из этого гнусными последствиями. Ток, индуцируемый в этом витке пойдет через центральный болт, корпус и вернется, откуда пришел с офигительным эффектом.

У меня применен стальной корпус. Я не стал крепить тор штатно через центральный болт, дабы не гневить судьбу и не думать, а вдруг верхний торец болта коснется верхней крышки, когда на нее поставишь бутылку или еще чего прижмешь не дай боже ( за нижнюю то ведь он надежно с изумительным контактом закреплен!). Поступил по другому. Просверлил в днище отверстия и закрепил тор четырьмя диаметрально противоположными кабельными полиэтиленовыми хомутами (Рис.9). И держит хорошо, и «козы» не будет.

Вот в общем-то и все. Теперь есть и что питать, и чем питать. На переднюю панель корпуса изготовил в программе Front Desinger лицевую часть с учетом расположения элементов, распечатал на бумаге, заламинировал и наклеил. А это готовое изделие.

Схема простого устройства для демонстрации эффекта электромагнитного ускорения металлического снаряда в пушке Гаусса.

Модуль драйвера BLDC двигателя жесткого диска — принципиальные электрические схемы включения и обзор готовых блоков.

Класс A — схема самодельного УМЗЧ высокого качества на полевых MOSFET транзисторах.

Что означают термины переключатель, тумблер и кнопка — в чём главные различия и особенности применения каждого из них.

7812 Характеристики схема подключения

Совместимость импульсных и линейных регуляторов

Интегральные линейные стабилизаторы (или как их еще называют регуляторы) серии КР142ЕН5 и КР142ЕН8 (см. рисунок 1), именуемые на сленге инженеров как КРЕН и их импортные аналоги (78хх) заслуженно пользуются популярностью у разработчиков благодаря своей надежности, простоте схемы включения (см. рисунок 2) и стабильности параметров.

Этого недостатка нет у импульсных стабилизаторов напряжения производимых компанией Aimtec. Импульсные стабилизаторы (AMSRB-78-Z, AMSRI-78-NZ, AMSRO-78-Z, AMSR-78-NZ, AMSR-78-Z и т. п. (1)) конструктивно совместимы с микросхемами КРЕН и их импортными аналогами семейств 78xx. Рабочая частота импульсных регуляторов Aimtec превышает 300 кГц, а КПД достигает 90−96%. В таблице 1 приведена таблица совместимости линейных и импульсных стабилизаторов.

Таблица 1. Таблица совместимостей импульсных и линейных регуляторов напряжения.

Во что обходится использование линейного стабилизатора?

Если сравнить по цене линейный и импульсный стабилизаторы, то на первый взгляд с экономической точки зрения более эффективно использовать достаточно дешевые линейные стабилизаторы. Но если смотреть не только на стоимость конкретного компонента, а на стоимость решения в целом, то можно увидеть, что использование линейных стабилизаторов приводят к ряду издержек, на фоне которых преимущество использования импульсного стабилизатора становится еще более очевидным. Рассмотрим их подробней:
1) Стоимость радиатора. В качестве радиатора обычно используется либо часть печатной платы, дополнительная площадь печатной платы в данном случае имеет свою стоимость. Либо используется непосредственно алюминиевый радиатор, стоимость которого может варьироваться в пределах 0,3−0,5 $.
2) Стоимость дополнительного объема или площади в корпусе предназначенного для рассеяния тепла. Радиатор необходимо как-то разместить в корпусе, соответственно для его размещения требуется корпус больших размеров, чем в случае решения, когда радиатор не требуется.
3) Стоимость конструкционных особенностей корпуса связанных с необходимостью рассеяния тепла. При использовании радиатора, кроме того, что требуется больший по размерам корпус, для отвода тепла он еще должен быть, скорее всего, более сложным конструктивно.
4) Стоимость калибровки. Если внутри прибора имеются измерительные цепи, то в случае внутреннего нагрева потребуется либо специальная температурная калибровка измерительных цепей, либо применение более дорогих операционных усилителей, ЦАП и АЦП с меньшим температурным дрейфом. Кроме того, потребуется сам датчик температуры.
5) Надежность устройства. Ко всему выше сказанному следует добавить уменьшение в 2 раза надежности устройства при нагреве его компонентов на каждые 10 градусов. По этому, если имеются особые требования к надежности устройства, возможно, придется использовать электронные компоненты с большими запасами по силовым характеристикам, а, следовательно, более дорогие.
За время, прошедшее с появления первых семейств импульсных стабилизаторов, появилось уже несколько поколений. При этом новые семейства, как правило интересней по цене чем более ранние серии. Наиболее интересные по цене серии отмечены в Таблице 2.
Семейства импульсных стабилизаторов напряжения.
В таблице 2 представлены семейства интегральных импульсных стабилизаторов напряжения в SIP и SMD корпусах производимых компанией Aimtec. В настоящее время производятся модели с выходным током от 0,5 до 2 Ампер. Кликнув мышью на наименование серии, вы можете посмотреть документацию на каждую серию, а кликнув на конкретное значение выходного напряжения, вы можете посмотреть наличие данного преобразователя на складе, его цену и при необходимости купить.
Последнюю информацию по сериям импульсных стабилизаторов можно посмотреть перейдя по ссылке.

Таблица 2. Семейства интегральных импульсных регуляторов напряжения Aimtec.

7,5; AMSR-78Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR-78Z.pdf?ft4=28-661; 4,75

34; 3,3, 5, 6,5, 9, 12, 15; 0,5; — ; SIP3 1,65

7,5; AMSRB-78-Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSRB-78-Z.pdf?ft4=10-577; 4,5

28; 3,3, 5, 12, 15; 0,5; + ; SIP3 1,65

7,5; AMSR-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR-78-NZ.pdf?ft4=41-263; 4,75

32; 3,3, 5, 6,5, 9, 12, 15; 0,5; — ; SIP3 1,65

7,5; AMSRW-78Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSRW-78Z.pdf?ft4=14-401; 9

72; 3,3, 5, 6,5, 7,2, 9, 12, 15; 0,5; — ; SIP3; 1,65

7,5; AMSRI-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsri-78-nz.pdf?ft4=23-614; 6

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 0,5; +; SIP3; 1,5

5; AMSR1-78Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR1-78Z.pdf?ft4=43-534; 4,75

18; 1,5, 1,8, 2,5, 3, 3, 5; 1; — ; SIP3 1,5

15; AMSRB1-78JZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrb1-78jz.pdf?ft4=41-524; 6

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 1; +; SIP3 1,65

7,5; AMSRO-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsro-78-nz.pdf?ft4=53-864; 4,75

32; 3,3, 5, -5, 12, -12, 15, -15 ; 0,5; +; SIP3; 0,75

7,5; AMSRL-78JZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet /HighResolution/amsrl-78-jz.pdf?ft4=35-457; 4,5

28; 1,5, 1,8, 2,5, 3,3, 5, 6,5, 9, 12, 15; 0,5; -; SMD; 1,5

15; AMSRL1-78JZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl1-78-jz.pdf?ft4=32-301; 4,75

36; 1,5, 1,8, 2,5, 3,3, 5, 6,5, 9, 12, 15; 1; + ; SMD; 1,65

7,5; AMSROL-78NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrol-78nz.pdf?ft4=34-819; 4,75

36; 3,3, 5, 9, 12, 15; 0,5; — ; 1,65

6; AMSRL-Z link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl-z.pdf?ft4=47-942; 9

72; 3,3, 5, 6,5, 7,2, 9, 12, 15 ; 0,5; — ; SMD; 1,2

15; AMSRL1-Z link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl1-z.pdf?ft4=27-645; 3

36; 1,2, 1,5, 1,8, 2,5, 3,3, 5, 6,5, 9, 12, 15; 1 ; — ; SMD; 30; AMSRL6-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl6-nz.pdf?ft4=27-582; 8,3

14; 0,75-5,0; 6; — ; SMD; 50; AMSRL10-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl10-nz.pdf?ft4=27-645; 8,3

14; 0,75-5,0; 10; — ; SMD; 80; AMSRL16-NZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl16-nz.pdf?ft4=27-582; 8,3

14; 0,75-5,0; 16; — ; SMD; 1,65

12; AMSRW-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSRW-78-NZ.pdf?ft4=14-401; 9

72; 3,3, 5, 6,5, 9, 12, 15, 24; 0,5; — ; SIP3 Верт.; 3,3

15; AMSRI1-78-NZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsri1-78-nz.pdf?ft4=31-739; 4,75

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 0,5; +; SIP3 Верт.; 7,5; AMSR1.5-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR1.5-78-NZ.pdf?ft4=32-758; 6,5

18; 5 ; 1,5; — ; SIP3 Верт. ; 5

13; AMSR2-78-NZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR2-78-NZ.pdf?ft4=58-771; 4,75

18; 5, 6,5; 2; — ; SIP3 Верт.; 6,6

30; AMSR2-78JZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsr2-jz.pdf?ft4=58-739; 6,5

36; 3,3, 5, 9, 12, 15; — ; +; SIP3 Верт.; 3, 3

15; AMSRO1-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsro1-78-nz.pdf?ft4=53-848; 4, 75

32; 3,3, 5, -5, 12, -12, 15, -15; 0,5; +; SIP3; 3,3

12; AMSR1-78-NZ (L) link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR1-78-NZ.pdf?ft4=43-534; 4,75

32; 3,3, 5, 6,5, 9, 12; 1; — ; SIP3 Гориз.; 1, 65

7, 5; AMSRI1-78-NZ (L) link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsri1-78-nz.pdf?ft4=31-739; 6

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 1; — ; SIP3 Гориз.; 5

13; AMSR2-78-NZ (L) link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR2-78-NZ.pdf?ft4=58-771; 4,75

18; 6,5; 2; — ; SIP3 Гориз.

Импульсные стабилизаторы могут применяться в автомобильной электронике, медицинской технике, телекоммуникационном оборудовании, электронике с питанием от аккумулятора.

Выводы
Применение импульсных регуляторов напряжения вместо линейных позволит уменьшить энергопотребление, и нагрев устройства, упростить конструктивное исполнение и повысить надежность.

Купить интегральные импульсные стабилизаторы семейства AMSR можно в любом из представительств компании Элтех Компонент.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]