Мегаомметр устройство и принцип действия

Мегаомметр устройство и принцип действия

Принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром.

Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

    • Аналоговые (электромеханические) — мегаомметры старого образца.
    • Цифровые (электронные) – современные измерительные устройства.

    Аналоговый мегаомметр

    Электронный мегаомметр

    Аналоговый мегаомметр

    Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

    Упрощенная схема электромеханического мегаомметра

    Обозначения:

        1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
        2. Аналоговый амперметр.
        3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
        4. Сопротивления.
        5. Переключатель измерений кОм/Мом.
        6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

      Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

          • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
          • На отображаемые данные влияет равномерность вращения динамо-машины.
          • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
          • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

          Современная аналоговая модель мегаомметра Ф4102

          Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

          Электронный мегаомметр

          Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

          Как пользоваться прибором

          При вращении рукояти ручного прибора или в результате нажатия кнопки электронных устройств на клеммные выходы подаются высокие показатели напряжение, которые посредством проводов поступают на измеряемую электроцепь или к электрическому оборудованию. При замерах на шкале или экране отображаются значения сопротивления.

          Порядок измерений

          Перед проведением испытаний сети должны быть обесточены, выключены все подключённые устройства и вынуты все вилки из розеток. При измерениях в сети освещения следует вывинтить все лампочки, чтобы они не перегорели от подаваемого высокого напряжения. Проверяемые цепи необходимо заземлить.

          Чтобы начать пользоваться мегаомметром, нужно:

              • Установить необходимую величину напряжения. Она зависит от типа испытуемого объекта и определяется по таблицам.
              • Подключить щупы.
              • Снять заземление с испытуемого элемента.
              • Крутить ручку динамо-машины для аналогового устройства или нажать кнопку «тест» для цифрового. Ручку необходимо вращать до появления светового сигнала. А при работе с цифровым устройством следует подождать, пока цифры на экране стабилизируются.

              После завершения измерений нужно прекратить вращение ручки аналогового прибора или нажать кнопку завершения измерений на цифровом устройстве.

              Мегаомметр ЭС0202. Схема электрическая принципиальная, устройство и принцип действия

              Аналоговые мегаомметры ЭС0202-Г построены по схеме логарифмического измерителя отношений. Мегаомметры ЭСО202 состоят из следующих основных узлов: электромеханического генератора переменного тока; преобразователя; электронного измерителя. Преобразователь предназначен для получения стабильного измерительного напряжения и выполнен по схеме с регулированием в цепи переменного тока (D1, V11). Переключение измерительного напряжения осуществляется изменением опорного напряжения на входе микросхемы D1 переключателем S2 путем изменения коэффициента деления делителя R12, R13, R14, R15. Электронный измеритель выполнен по схеме логарифмического усилителя (D2, D3). Принцип работы мегаомметра рассмотрим на примере ЭС0202/1-Г. Измерительное напряжение через резистор R11 поступает одновременно на резисторы R16, R32, R33 и измеряемый резистор. Ток измерителя Iр равен:

              где К — коэффициент пропорциональности, Rх — измеряемое сопротивление, R16, R17, R18, R32, R33 — сопротивления. Из приведенной выше зависимости следует, что ток измерителя пропорционален логарифму отношения сопротивлений и не зависит от измерительного напряжения.

              Из приведенной выше зависимости следует, что ток измерителя пропорционален логарифму отношения сопротивлений и не зависит от измерительного напряжения.

              Об устройстве и принципе работы

              Мегаомметр – это прибор, применяемый для замеров уровня сопротивления изоляционного покрытия электрического кабеля или провода. Делается это путём непосредственного подключения к линии специальных щупов.

              Принцип действия мегаомметра основывается на использовании источника постоянного высокого напряжения, генерирующего это самое напряжение в цепи, тем самым проверяя изоляцию. Модельный ряд прибора многообразен и разнится в основном набором калибровочных напряжений, подаваемых по одному или комбинациями. Первые будут проще и дешевле, вторые – сложнее и дороже.

              Существует две разновидности устройства. В старой комплектации, включающей встроенную динамомашину, приводимую в действие специальной боковой ручкой. Либо электронный вариант, способный создавать испытательное напряжение, чтобы проводить замеры, как в бытовой электросети, так и в батарейках или аккумуляторах.

              Ручной мегаомметр с динамомашиной

              Ручной мегаомметр с динамомашиной Источник avito.st

              Помимо измерения электрических параметров сети в некоторых электронных моделях возможно определения напряжения, низкоомного сопротивления и т.д., фактически заменяя мультиметр. Единственный недостаток – малый выбор показаний калибровочного напряжения для определения состояния изоляционного покрытия. Фактически это два положения: 500В и 1000В.

              Принцип работы мегаомметра опирается на широко известный закон Ома – I=U/R. Работа прибора сводится к определению сопротивления в цепи, опираясь на эту формулу, т.е. генерируя выставленное пользователем напряжение, определяется сила тока, а прибор выдаёт на шкалу результат – R=U/I.


              МЕГАОММЕТР на Атмега328Р

              КОМПАКТНЫЙ ИЗМЕРИТЕЛЬ УТЕЧКИ МЕГАОММЕТР НА Атмега328Р

              МЕГАОММЕТР на Атмега328Р

              Промышленный вариант мегаомметра достаточно габаритен и имеет немалый вес. Единственный достоинством этого монстра является, то что он поверен, но если вам в ремонте нужно срочно измерить сопротивление утечки, то электронный вариант более предпочтителен.

              Поискав в интернете, простого устройства не нашел, единственный мегаомметр, который повторили радиолюбители был из журнала «Silicon Chip» октябрь 2009 года, но с доработанной прошивкой. Предлагаемый вашему вниманию прибор имеет габариты 100х60х25 ( корпуса были приобретены на AliExpress) и имеет вес не более 100 грамм. Устройство собрано на микроконтроллере Atmega328P. Питание осуществляется от литеевого аккумулятора и ток потребления составляет около 5 мА. Чем меньше сопротивление измеряемой цепи, тем больше ток потребления и достигает 700-800 мА, но нужно учесть, что цепи с сопротивление меньше 10 кОм встречаются редко и измерение осуществляется за несколько секунд. В устройстве применены два DC-DC преобразователя на MT3608 и MC34063. Первый используется для питания контроллера, напряжение аккумулятора повышается и стабилизируется на уровне 5 вольт, второй преобразователь на 100В, это определено тем, что в основном используется для замеров утечки в электронных устройствах, ну и сделать 500 или 1000В экономичный преобразователь очень пробематично. Сначала была идея оба преобразователя собрать на МТ3608, но после того, как я спалил 8 микросхем, было решено сделать на МС34063. Да и при 500, 1000В пришлось применять более высокоомный делитель и как следствие применение операционных усилителей Rail-To-Rail.


              Индикация осуществляется на жидкокристаллический дисплей. Для заряда аккумулятора применен контроллер заряда на TP4056 (отдельная платка 17х20 мм).

              Устройство собрано на двухсторонней печатной плате из фольгированного стеклотекстолита, изготовленной по технологии ЛУТ. Не стоит пугаться слова «двухсторонняя».Распечатываются две картинки ПП низ и верх(зеркально). Совмещаются на просвет и скрепляются степлером в виде конверта. Вкладывается заготовка и сначала прогревается с двух сторон утюгом, затем с двух сторон тщательно проглаживается через два стоя писчей бумаги. Отпечатанную заготовку бросаем в емкость с теплой водой примерно на пол часа, затем пальцем под струёй теплой воды убираем остатки бумаги. После травления лудим в сплаве Розе. Сквозные отверстия для проводников выполнены медным луженым проводом диаметром 0.7 мм. Входы прибора выполнены из латунных трубок от старого мультиметра, поэтому можно применять штатные щупы от мультиметров, но желательно сделать самодельные с зажимами типа «крокодил».

              Применены SMD детали, резисторы 5%, конденсаторы 10%. Нужно учесть, что это не омметр и не служит для точного измерения сопротивления, хотя точность в диапазоне 1К — 1М достаточно велика. Для повышения достоверности показаний весь диапазон измерения сопротивлений разбит на три. В прошивке применен oversampling. Использованы три делителя напряжения 1;10, 1:100 и 1:1000. Последний диапазон очень растянут, от 10 мОм до 100 мОм и при дискретности АЦП микроконтроллера 10 бит имеет очень крупный шаг, около 90 кОм. К тому же пришлось применить цепи защиты входом микроконтроллера и они вносят погрешность на двух верхних диапазонах. Ниже вы видите рисунки с результатами замеров.

              Может кто-то захочет усовершенствовать прибор или более точно откалибровать, поэтому я прикладываю исходники. При калибровке подключаем точный резистор не хуже 1%, например 47 кОм и подбираем коэффициент для диапазона 10-100 кОм в строке:

              Шкала от 10 до 100 мОм очень не линейна, вначале показания занижаются kx2, а в конце диапазона завышаются kx1, поэтому подбираются два коэффициента аналогично, но резистор ставим 20 мОм, затем 47 мОм и затем 91 мОм:

              Мегаомметр. Виды и устройство. Работа и применение. Особенности

              Мегаомметр – специализированный прибор, предназначенный для выполнения замеров сопротивления. В отличие от омметра, данное устройство получило название вследствие особенностей функционального назначения устройства. «Мега» означает тысяча, а это значит, что прибор применяется с целью нахождения сопротивлений высоких значений. Поэтому устройство обеспечивает генерацию напряжений, благодаря которым и осуществляется измерение.

              В большинстве случаев мегаомметр необходим для выяснения величин сопротивления в электроизоляции кабелей, электроцепей, трансформаторных установок, электродвигателей и других электрических установок. Изоляция представляет материал, который препятствует протеканию электротока в ненужном направлении. Необходимость проверки изоляции токопроводящих частей вызвана тем, чтобы не было короткого замыкания, возгорания, а также поражения людей электротоком.

              Мегаомметр бывает двух основных видов, они различаются методом измерения, а также типом источника питания.

              • Аналоговые. Их часто именуют стрелочными устройствами. Главная их особенность в том, что в них встроена индивидуальная динамо-машина, которая запускается с помощью кругового движения рукоятки. Также предусмотрена шкала со стрелкой. Сопротивление измеряется благодаря магнитоэлектрическому действию. Стрелка крепится на оси, на которой также находится рамочная катушка, на которую действует магнитное поле постоянного магнита. Когда ток протекает по катушке, то наблюдается отклонение стрелки на некоторый угол. Величина угла зависит от напряжения и силы тока. Возможность подобного измерения определяется законом электромагнитной индукции.

              Megaommetr analogovyi

              К преимуществам стрелочного устройства относятся надежность и неприхотливость. В то же время прибор является морально устаревшим, ведь данный агрегат имеет существенные размеры и большую массу.

              • Цифровые. Данные измерители наиболее распространены. В них установлен мощный генератор импульсов, который работает с помощью полевых транзисторов. Подобные устройства оснащаются источником питания, они производят преобразование переменного тока в постоянный. В качестве источника тока может использоваться сеть либо аккумулятор. Измерение сопротивления осуществляется с помощью усилителя посредством сравнения падения напряжения в электроцепи с сопротивлением эталона.

              Megaommetr tsifrovoi

              Показатели отражаются на экране. В большинстве случаев предусмотрено сохранение результатов в памяти, дабы в дальнейшем была возможность сравнить данные. Электронное устройство имеет малый вес и небольшие габариты, благодаря чему можно выполнять разные электрические измерения. Но, чтобы работать с таким устройством, требуется достаточно высокая квалификация пользователя.

              Кроме того, устройства отличаются друг от друга генерируемым напряжением и пределами измерений:
              • Рабочее напряжение достигает 500 Вольт и предела в 500 МОм;
              • 1000 Вольт и предела в 1000 МОм.
              • 2500 Вольт и предела в 2500 МОм.

              Также устройства отличаются классом точности. Например, устройство М4100, которое пользуется значительной популярностью у профессионалов, функционирует с погрешностью максимум 1%. Ф4101 выделяется погрешностью не выше 2,5%. Данные показатели следует учитывать в особенности там, где нужна большая точность определения сопротивления. Подбирать средство для испытаний и тестирования электросистемы следует с учетом сопротивления и иных показателей.

              Megaommetr M4100
              Устройство
              Мегаомметр любого вида имеет следующие элементы:

              Ustroistvo megaommetra

              В стрелочных устройствах напряжение создается динамомашиной, которая заключена в корпус. Динамомашина запускается благодаря пользователю, который крутит ручку устройства с установленной частотой. В большинстве случаев частота вращении должна составлять двум оборотам в секунду. Цифровые устройства питаются от электросети, но в то же время могут работать от батареек или аккумулятора. Функционирует устройство благодаря закону Ома, который определяет силу тока как отношение напряжения к сопротивлению. Устройство мерит электроток, протекающий между двумя включенными объектами, к примеру, жила-земля, 2 жилы и так далее. Измерения осуществляются эталонным напряжением, оно известно наперед. Мегаомметр, учитывая напряжение и ток, легко определяет сопротивление изоляционного слоя, которое измеряет.

              В качестве источника постоянного напряжения выступает генератор постоянного тока. Чтобы менять пределы измерения, предусмотрен тумблер-переключатель, который дает возможность коммутировать разные резисторы. Благодаря этому можно менять режим работы и выходное напряжение.

              Принцип действия

              Каждый материал, который не проводит ток, имеет сопротивление изоляции. Со временем она устаревает, либо повреждается. При этом повреждения могут возникать внезапно, иногда их невозможно увидеть. Однако процесс может привести к выходу из строя применяемого оборудования, могут возникнуть замыкания и пожары. К тому же отсутствие изоляции может повлечь появлению на электрическом оборудовании напряжения, которое будет опасно для жизни человека.

              Именно для таких измеренй применяется мегаомметр, он создает на измерительных выводах напряжение необходимой величины, чтобы измерить ток, который проходит по цепи. Изначально для генерации напряжений применялись электромеханические машины. Необходимо было вращать рукоятку, дабы генератор вырабатывал напряжение. Главное достоинство таких устройств в том, что им не нужна сеть либо батарея. Измерительная система здесь аналоговая, применяется стрелка, которая демонстрирует показания на шкале.

              Также существуют электронные приборы и микропроцессорные устройства. Последние включают измерители тока и напряжения, жидкокристаллический дисплей, микроконтроллер, клавиатуру, источник питания, импульсный преобразователь напряжения. С клавиатуры задается значение испытательного напряжения, после чего генератор создает импульсы тока. Проводятся измерения, полученное значение применяется для вычисления измеряемого сопротивления. Устройство имеет несколько диапазонов измерений, которые переключаются автоматически с помощью изменения коэффициента передачи.

              Активный выпрямитель выполняет преобразование переменного тока в постоянный. Напряжение постоянного тока при измерении сопротивления преобразуется в дискретную форму посредством преобразователя частоты напряжения, после чего оно направляется в микроконтроллер. В микроконтроллере происходит обработка команд, которые идут с клавиатуры. Далее идет управление генератором, автоматическим переключением диапазонов. Микроконтроллер вычисляет и запоминает значения измеряемых сопротивлений.

              В большинстве случаев в устройстве применяется двухстрочный жидкокристаллический дисплей. Стандартные сервисные функции экрана включают индикатор разряда батареи и выключателя питания в случае отсутствия манипуляций. Корпус выполняется из прочного диэлектрического пластика, на панели спереди располагается клавиатура и индикатор гнезда, куда подключается измерительные щупы. На торце корпуса находится разъем, предназначенный для подключения адаптера. Питание устройства осуществляется от встроенного аккумулятора. Подзарядка батареи осуществляется от бытовой электрической сети в 220 вольт.

              Применение
              Izmerenie megaommetrom
              Мегаомметр находит следующее применение:
              • Измерение изоляции электрических приборов, а также установок во время наладки и обслуживания в промышленных и лабораторных условиях.
              • Измерение сопротивления разъемов, изоляционных материалов, в том числе обмоток электромашин. В большинстве случаев устройство используется для проверки изоляции.
              • Измерение сопротивлений с целью проведения расчетов коэффициентов абсорбции, а также поляризации.

              При работе мегаомметр создает напряжение, которое может быть опасным для пользователя. Поэтому следует проявлять осторожность. Для начала нужно обесточить оборудование или кабели, в которых нужно провести измерение сопротивления. В промышленности для работы с устройством допускаются только специалисты, которые имеют группу электробезопасности не меньше третьей. Во время измерения изоляции оборудования, к примеру, электрических двигателей, необходимо отключить их от сети. Затем цепи нужно заземлить. С этой целью к шине заземления подключается многожильный провод с хорошей изоляцией.

              Принцип действия мегаомметра. Как работать с прибором правильно.

              Принцип действия мегаомметра. Как работать с прибором правильно.

              В каждой электрической сети существует несколько проводников, разделённых материалом-диэлектриком, не пропускающим ток. Надёжная работа схемы невозможна, если его свойства окажутся недостаточными. Каким прибором проверяют сопротивление изоляции? Часто сопротивление диэлектрика достигает таких высоких значений, которые простой мультиметр не может определить.

              Как работает мегаомметр

              Мегаомметр — устройство, которое будет измерять даже самые высокие значения сопротивления, и отличается от стандартного мультиметра тем, что может измерять сопротивление с высокой точностью даже на высочайшем напряжении, до 2500 Вольт. Они бывают аналоговыми (со стрелкой) и цифровыми.

              Принцип действия заключается в законе Ома. Искусственным путем параллельно участку проводника создается контур. И на нем измеряется сопротивление по току утечки.

              Используя самые современные мегаомметры, вы сможете испытывать любую изоляцию и проводить необходимые измерения в автоматическом режиме. Это делается для того, чтобы проверить целостность и исправность свойств изоляционного материала, который со временем может испортиться по ряду причин.

              Подключение щупов мегомметра. Проверка сопротивления.

              Как работать мегаомметром. Проверка сопротивления.

              Если проверяем сопротивление, то подключаем первый щуп к минусу. В основном его обозначают так: Line, — (минус), или L. А второй к плюсу/земле (G, Earth) в зависимости от маркировки на вашей модели.

              Есть ещё третий разъем для экрана (E или Э) проводников, если он присутствует, у экранированных проводников. В большинстве случаев он не нужен. Часто производитель делает так, чтобы цвет щупа совпадает с цветом гнезда. Обратите внимание.

              Как подключить мегомметр. Измерение сопротивления изоляции.

              Сопротивление и испытания должны быть следующими:

              • Электроцепи до 50 В: испытываются 100 Вольтами, сопротивление должно быть не менее 0,5 МОм.
              • Электроцепи до 100 В: испытываются 250 В, сопротивление не менее 0,5 МОм.
              • Электроцепи до 380 В: испытываются 600-1 000 Вольтами, сопротивление для освещения не менее 0,5 МОм. Для электрических машин по правилам значение тоже, но лучше всего опираться на 1 МОм для надежности.
              • Электроцепи до 1000 В: испытываются 1 500-2 500 Вольтами, сопротивление не менее 1 МОм.

              Но помните, что 0,5-1 МОм это нижняя граница допустимого. И в скором времени во избежание проблем лучше всего провести ТО, ремонт или замену.

              Причины нарушения изоляции

              Причины нарушения изоляции. Как проверить мегомметром.

              Во-первых, сам изоляционный материал может быть недостаточно качественным. В нем могут присутствовать инородные включения, что ухудшает изоляционные свойства и снижает сопротивление. Во-вторых, любой материал со временем поглощает влагу и воздух, что также может сказываться на качестве и долговечности покрытия. И, в конце концов, своё влияние может оказывать постоянное высокое напряжение, воздействующее на диэлектрик.

              Мегаомметр окажет вам незаменимую помощь, когда понадобится продиагностировать изоляционный материал на предмет повреждений и снижения сопротивления. Вы сможете найти причину проблемы и успешно отремонтировать или заменить поврежденный участок. Важно делать всё своевременно, поскольку в ином случае могут возникнуть крайне негативные, а порой даже трагические последствия.

              У каждого элемента электросети есть свой срок технического обслуживания. Электропроводку рекомендуется проверять раз в 1-1,5 года, чтобы заблаговременно узнать о проблеме. Особенное внимание нужно уделять электрическим машинам (двигатели. генераторы). Своевременное ТО продлит срок службы и сэкономит средства на капитальный ремонт.

              Для этого можно обратиться к специалистам, которые продиагностируют ваш мегаомметр на предмет разнообразных повреждений или неисправностей, которые обязательно будут устранены в кратчайшие сроки. Ответственные ремонтные фирмы не станут браться за починку оборудования, не подлежащего восстановлению.

              Читайте также  Как проверить батарейку на работоспособность без...
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]