Марки алюминия и их свойства

Марки алюминия и их свойства

Алюминий сплавы и марки

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Алюминий сплавы и марки труба, лента, проволока, лист, круг Алюминий сплавы и марки

Алюминий для раскисления
АВ86АВ86ФАВ88АВ88ФАВ91
АВ91ФАВ92АВ92ФАВ97АВ97Ф
Алюминиевый деформируемый сплав
12011420АВАД31АД33
АД35АК4АК4-1АК6АК8
АМг1АМг2АМг3АМг3САМг4
АМг4.5АМг5АМг5ПАМг6АМц
АМцСАЦплВ65В93В94
В95В95ПВ96В96цВ96Ц1
ВД17Д1Д12Д16Д16П
Д18Д19Д1ПД20Д21
ММ
Алюминиевый антифрикционный сплав
АМСТАН-2.5АО20-1АО3-1АО3-7
АО6-1АО9-1АО9-2АО9-2БАСМ

Свойства и полезная информация:

Описание алюминия: Алюминий не имеет полиморфных превращений, обладает решеткой гранецентрированного куба с периодом а=0,4041 нм. Алюминий и его сплавы хорошо поддаются горячей и холодной деформации — прокатке, ковке, прессованию, волочению, гибке, листовой штамповке и другим операциям.

Все алюминиевые сплавы можно соединять точечной сваркой, а специальные сплавы можно сваривать плавлением и другими видами сварки. Деформируемые алюминиевые сплавы разделяются на упрочняемые и неупрочняемые термической обработкой.

Все свойства сплавов определяют не только способом получения полуфабриката заготовки и термической обработкой, но главным образом химическим составом и особенно природой фаз — упрочнителей каждого сплава. Свойства стареющих алюминиевых сплавов зависят от видов старения: зонного, фазового или коагуляционного.

На стадии коагуляционного старения (Т2 и ТЗ) значительно повышается коррозионная стойкость, причем обеспечивается наиболее оптимальное сочетание характеристик прочности, сопротивления коррозии под напряжением, расслаивающей коррозии, вязкости разрушения (К) и пластичности (особенно в высотном направлении).

Состояние полуфабрикатов, характер плакировки и направление вырезки образцов обозначены следующим образом — Условные обозначения проката из алюминия:

М — Мягкий, отожженный

Т — Закаленный и естественно состаренный

Т1 — Закаленный и искусственно состаренный

Т2 — Закаленный и искусственно состаренный по режиму, обеспечивающему более высокие значения вязкости разрушения и лучшее сопротивление коррозии под напряжением

ТЗ — Закаленный и искусственно состаренный по режиму, обеспечивающему наиболее высокие сопротивления коррозии под напряжением и вязкость разрушения

Н — Нагартованный (нагартовка листов сплавов типа дуралюмии примерно 5—7 %)

H1 — Усиленно нагартованный (нагартовка листов примерно 20 %)

ТПП — Закаленный и естественно состаренный, повышенной прочности

ГК — Горячекатаные (листы, плиты)

Б — Технологическая плакировка

А — Нормальная плакировка

УП — Утолщенная плакировка (8 % на сторону)

Д — Продольное направление (вдоль волокна)

П — Поперечное направление

В — Высотное направление (толщина)

X — Хордовое направление

Р — Радиальное направление

ПД, ДП, ВД, ВП, ХР, РХ — Направление вырезки образцов, применяемое для определения вязкости разрушения и скорости роста усталостной трещины. Первая буква характеризует направление оси образца, вторая — направление плоскости, например: ПВ — ось образца совпадает с шириной полуфабриката, а плоскость трещины параллельна высоте или толщине.

Анализ и получение проб алюминия: Руды. В настоящее время алюминий получают только из одного вида руды — бокситов. В обычно используемых бокситах содержится 50—60% А12О3, <30% Fe2О3, несколько процентов SiО2, ТiО2, иногда несколько процентов СаО и ряд других окислов.

Пробы от бокситов отбирают по общим правилам, обращая особое внимание на возможность поглощения влаги материалом, а также на различное соотношение долей крупных и мелких частиц. Масса пробы зависит от величины опробуемой поставки: от каждых 20 т необходимо отбирать в общую пробу не менее 5 кг.

При отборе проб боксита в конусообразных штабелях от всех крупных кусков массой >2 кг, лежащих в окружности радиусом 1 м, откалывают маленькие кусочки и отбирают в лопату. Недостающий объем заполняют мелкими частицами материала, взятыми с боковой поверхности опробуемого конуса.

Отобранный материал собирают в плотно закрывающиеся сосуды.

Весь материал пробы измельчают в дробилке до частиц размером 20 мм, ссыпают в конус, сокращают и снова дробят до частиц размером <10 мм. Затем материал еще раз перемешивают и отбирают пробы для определения содержания влаги. Оставшийся материал высушивают, снова сокращают и измельчают до частиц размером < 1 мм. Окончательный материал пробы сокращают до 5 кг и дробят без остатка до частиц мельче 0,25 мм.

Дальнейшую подготовку пробы для анализа проводят после высушивания при 105° С. Размер частиц пробы для анализа должен быть менее 0,09 мм, количество материала 50 кг.

Приготовленные пробы боксита очень склонны к расслоению. Если пробы, состоящие из частиц размером <0,25 мм, транспортируют в сосудах, то перед отбором части материала необходимо перемешать весь материал до получения однородного состава. Отбор проб от криолита и фторида алюминия не представляет особых трудностей. Материал, поставляемый в мешках и имеющий однородный состав, опробуют с помощью щупа, причем подпробы отбирают от каждого пятого или десятого мешка. Объединенные подпробы измельчают до тех пор, пока они не будут проходить через сито с размером отверстий 1 мм, и сокращают до массы 1 кг. Этот сокращенный материал пробы измельчают, пока он не будет полностью проходить через сито с размером отверстий 0,25 мм. Затем отбирают пробу для анализа и дробят до получения частиц размером 0,09 мм.

Пробы от жидких расплавов фторидов, применяемых при электролизе расплава алюминия в качестве электролитов, отбирают стальным черпаком из жидкого расплава после удаления твердой настыли с поверхности ванны. Жидкую пробу расплава сливают в изложницу и получают маленький слиточек размерами 150х25х25 мм; затем всю пробу измельчают до размера частиц лабораторной пробы менее 0,09 мм . читать дальше >>>

Плавка алюминия: В зависимости от масштабов производства, характера литья и энергетических возможностей плавку алюминиевых сплавов можно производить в тигельных печах, в электропечах сопротивления и в индукционных электропечах.

Плавка алюминиевых сплавов должна обеспечивать не только высокое качество готового сплава, но и высокую производительность агрегатов и, кроме того, минимальную стоимость литья.

Наиболее прогрессивным методом плавки алюминиевых сплавов является метод индукционного нагрева токами промышленной частоты.

Технология приготовления алюминиевых сплавов слагается из тех же технологических этапов, что и технология приготовления сплавов на основе любых других металлов.

Загрузка шихты при плавке алюминиевых сплавов производится в следующем порядке.

1. При проведении плавки на свежих чушковых металлах и лигатурах в первую очередь загружают (полностью или по частям) алюминий, а затем растворяют лигатуры.

2. При проведении плавки с использованием в шихте предварительного чушкового сплава или чушкового силумина в первую очередь загружают и расплавляют чушковые сплавы, а затем добавляют необходимое количество алюминия и лигатур.

3. В том случае, когда шихта составлена из отходов и чушковых металлов, ее загружают в следующей последовательности: чушковый первичный алюминий, бракованные отливки (слитки), отходы (первого сорта) и рафинированный переплав и лигатуры.

Медь можно вводить в расплав не только в виде лигатуры, но и в виде электролитической меди или отходов (введение путем растворения).

Краткие обозначения:
σв— временное сопротивление разрыву (предел прочности при растяжении), МПа ε— относительная осадка при появлении первой трещины, %
σ0,05— предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2— предел текучести условный, МПаσизг— предел прочности при изгибе, МПа
δ5,δ4,δ10— относительное удлинение после разрыва, %σ-1— предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж— предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν— относительный сдвиг, % n— количество циклов нагружения
s в— предел кратковременной прочности, МПаR и ρ— удельное электросопротивление, Ом·м
ψ— относительное сужение, %E— модуль упругости нормальный, ГПа
KCU и KCV— ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T— температура, при которой получены свойства, Град
s T— предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ— коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB— твердость по БринеллюC— удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV— твердость по Виккерсу pn и r— плотность кг/м 3
HRCэ— твердость по Роквеллу, шкала Са— коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB— твердость по Роквеллу, шкала Вσ t Т— предел длительной прочности, МПа
HSD— твердость по ШоруG— модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Марки алюминия: виды, свойства и области применения

Сегодня алюминий используется практически во всех отраслях промышленности, начиная с производства пищевой посуды и заканчивая созданием фюзеляжей космических кораблей. Для тех или иных производственных процессов подходят только определенные марки алюминия, которые обладают определенными физико-химическими свойствами.

марки алюминия

Виды алюминия

Все марки металла описаны и внесены в единую систему признанных национальных и международных стандартов: Европейских EN, Американских ASTM и международных ISO. В нашей стране марки алюминия определены ГОСТом 11069 и 4784. Во всех документах алюминий и его сплавы рассматриваются отдельно. При этом сам металл подразделяется именно на марки, а сплавы не имеют конкретно определенных знаков.

В соответствии с национальными и международными стандартами, следует выделить два вида микроструктуры нелегированного алюминия:

  • высокой чистоты с процентным содержанием более 99,95%;
  • технической чистоты, содержащей около 1% примесей и добавок.

В качестве примесей чаще всего рассматривают соединения железа и кремния. В международном стандарте ISO для алюминия и его сплавов выделена отдельная серия.

Марки алюминия

Технический вид материала делится на определенные марки, которые закреплены за соответствующими стандартами, например АД0 по ГОСТ 4784-97. При этом в классификацию входит и металл высокой частоты, чтобы не создавать путаницу. Данная спецификация содержит следующие марки:

  1. Первичный (А5, А95, А7Е).
  2. Технический (АД1, АД000, АДС).
  3. Деформируемый (АМг2, Д1).
  4. Литейный (ВАЛ10М, АК12пч).
  5. Для раскисления стали (АВ86, АВ97Ф).

Кроме того, выделяют и категории лигатуры – соединения алюминия, которые используются для создания сплавов из золота, серебра, платины и других драгоценных металлов.

Первичный алюминий

Первичный алюминий (марка А5) – типичный пример данной группы. Его получают путем обогащения глинозема. В природе металл в чистом виде не встречается ввиду его высокой химической активности. Соединяясь с другими элементами, он образует бокситы, нефелины и алуниты. Впоследствии из этих руд получают глинозем, а из него с помощью сложных химико-физических процессов — чистый алюминий.

марки алюминия по госту

ГОСТ 11069 устанавливает требования к маркам первичного алюминия, которые следует отметить путем нанесения вертикальных и горизонтальных полос несмываемой краской различных цветов. Данный материал нашел широкое применение в передовых отраслях промышленности, главным образом там, где от сырья требуются высокие технические характеристики.

Технический алюминий

Техническим алюминием называют материал с процентным содержанием инородных примесей менее 1%. Очень часто его также называют нелегированным. Технические марки алюминия по ГОСТу 4784-97 характеризуются очень низкой прочностью, но высокой антикоррозионной стойкостью. Благодаря отсутствию в составе легирующих частиц на поверхности металла быстро образуется защитная оксидная пленка, которая отличается устойчивостью.

алюминий марка а5

Деформируемый алюминий

К деформируемому алюминию относят материал, который подвергают горячей и холодной обработке давлением: прокатке, прессованию, волочению и другим видам. В результате пластических деформаций из него получают полуфабрикаты различного продольного сечения: алюминиевый пруток, лист, ленту, плиту, профили и другие.

алюминиевый пруток

Область применения деформируемого алюминия, как и та, где применяется алюминиевый пруток, достаточно обширна. Он используется как в областях, требующих высоких технических характеристик от материалов — в корабле- и самолетостроении, так и на строительных площадках в качестве сплава для сварки.

Литейный алюминий

Литейные марки алюминия используются для производства фасонных изделий. Их главной особенностью является сочетание высокой удельной прочности и низкой плотности, что позволяет отливать изделия сложных форм без образования трещин.

алюминий физические свойства и применение

  1. Высокогерметичные материалы (АЛ2, АЛ9, АЛ4М).
  2. Материалы с высокой прочностью и жароустойчивостью (АЛ 19, АЛ5, АЛ33).
  3. Вещества с высокой антикоррозионной устойчивостью.

Очень часто эксплуатационные характеристики изделий из литейного алюминия повышают различными видами термической обработки.

Алюминий для раскисления

На качество изготавливаемых изделий оказывает влияние и то, какие имеет алюминий физические свойства. И применение низкосортных сортов материала не ограничивается созданием полуфабрикатов. Очень часто он используется для раскисления стали – удаления из расплавленного железа кислорода, который растворен в нем и повышает тем самым механические свойства металла. Для проведения данного процесса чаще всего применяются марки АВ86 и АВ97Ф.

Сплавы из алюминия и их применение

Алюминий применяют для производства из него изделий и сплавов на его основе.

Легирование — процесс введения в расплав дополнительных элементов, улучшающих механические, физические и химические свойства основного материала. Легирование является обобщающим понятием ряда технологических процедур, проводимых на различных этапах получения металлического материала с целями повышения качества металлургической продукции.

Введение различных легирующих элементов в алюминий существенно изменяет его свойства, а иногда придает ему новые специфические свойства.

Прочность чистого алюминия не удовлетворяет современные промышленные нужды, поэтому для изготовления любых изделий, предназначенных для промышленности, применяют не чистый алюминий, а его сплавы.

При различном легировании повышаются прочность, твердость, приобретается жаропрочность и другие свойства. При этом происходят и нежелательные изменения: неизбежно снижается электропроводность , во многих случаях ухудшается коррозионная стойкость , почти всегда повышается относительная плотность . Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколько повышает ее, и магнием, который тоже повышает коррозионную стойкость (если его не более 3 %) и снижает относительную плотность, так как он легче, чем алюминий.

Алюминиевые сплавы

Алюминиевые сплавы по способу изготовления из них изделий делят на две группы:
1) деформируемые (имеют высокую пластичность в нагретом состоянии),
2) литейные (имеют хорошую жидкотекучесть).

Такое деление отражает основные технологические свойства сплавов. Для получения этих свойств в алюминий вводят разные легирующие элементы и в неодинаковом количестве.

Сырьем для получения сплавов обоего типа являются не только технически чистый алюминий, но также и двойные сплавы алюминия с кремнием, которые содержат 10-13 % Si, и немного отличаются друг от друга количеством примесей железа, кальция, титана и марганца. Общее содержание примесей в них 0.5-1.7 %. Эти сплавы называют силуминами . Для получения деформируемых сплавов в алюминий вводят в основном растворимые в нем легирующие элементы в количестве, не превышающем предел их растворимости при высокой температуре. Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наибольшую пластичность и наименьшую прочность. Это и обусловливает их хорошую обрабатываемость давлением.

Основными легирующими элементами в различных деформируемых сплавах является медь, магний, марганец и цинк, кроме того, в сравнительно небольших количествах вводят также кремний, железо, никель и некоторые другие элементы.

Дюралюминии — сплавы алюминия с медью

Характерными упрочняемыми сплавами являются дюралюминии — сплавы алюминия с медью, которые содержат постоянные примеси кремния и железа и могут быть легированы магнием и марганцем. Количество меди в них находится в пределах 2.2-7 %.

Медь растворяется в алюминии в количестве 0,5% при комнатной температуре и 5,7% при эвтектической температуре, равной 548 C.

Термическая обработка дюралюминия состоит из двух этапов. Сначала его нагревают выше линии предельной растворимости (обычно приблизительно до 500 C). При этой температуре его структура представляет собой гомогенный твердый раствор меди в алюминии. Путем закалки, т.е. быстрого охлаждения в воде, эту структуру фиксируют при комнатной температуре. При этом раствор получается пересыщенным. В этом состоянии, т.е. в состоянии закалки, дюралюминий очень мягок и пластичен.

Структура закаленного дюралюминия имеет малую стабильность и даже при комнатной температуре в ней самопроизвольно происходят изменения. Эти изменения сводятся к тому, что атомы избыточной меди группируются в растворе, располагаясь в порядке, близком к характерному для кристаллов химического соединения CuAl. Химическое соединение еще не образуется и тем более не отделяется от твердого раствора, но за счет неравномерности распределения атомов в кристаллической решетке твердого раствора в ней возникают искажения, которые приводят к значительному повышению твердости и прочности с одновременным снижением пластичности сплава. Процесс изменения структуры закаленного сплава при комнатной температуре носит название естественного старения.

Естественное старение особенно интенсивно происходит в течение первых нескольких часов, полностью же завершается, придавая сплаву максимальную для него прочность, через 4-6 суток. Если же сплав подогреть до 100-150 C, то произойдет искусственное старение . В этом случае процесс совершается быстро, но упрочнение происходит меньшее. Объясняется это тем, что при более высокой температуре диффузионные перемещения атомов меди осуществляются более легко, поэтому происходит завершенное образование фазы CuAl и выделение ее из твердого раствора. Упрочняющее же действие полученной фазы оказывается меньшим, чем действие искаженности решетки твердого раствора, возникающей при естественном старении.

Сравнение результатов старения дюралюминия при различной температуре показывает, что максимальное упрочнение обеспечивается при естественном старении в течении четырех дней.

Сплавы алюминия с марганцем и магнием

Среди неупрочняемых алюминиевых сплавов наибольшее значение приобрели сплавы на основе Al-Mn и Al-Mg.

Марганец и магний , так же как и медь, имеют ограниченную растворимость в алюминии, уменьшающуюся при снижении температуры. Однако эффект упрочнения при их термообработке невелик. Объясняется это следующим образом. В процессе кристаллизации при изготовлении сплавов, содержащих до 1,9% Mn, выделяющийся из твердого раствора избыточный марганец должен был бы образовать с алюминием растворимое в нем химическое соединение Al (MnFe), которое в алюминии не растворяется. Следовательно, последующий нагрев выше линии предельной растворимости не обеспечивает образование гомогенного твердого раствора, сплав остается гетерогенным, состоящим из твердого раствора и частиц Al (MnFe), а это приводит к невозможности закалки и последущего старения.

В случае системы Al-Mg причина отсутствия упрочнения при термической обработке иная. При содержании магния до 1,4% упрочнения быть не может, так как в этих пределах он растворяется в алюминии при комнатной температуре и никакого выделения избыточных фаз не происходит. При большем же содержании магния закалка с последующим химическим старением приводит к выделению избыточной фазы — химического соединения Mg Al .

Однако свойства этого соединения таковы, что процессы, предшествующие его выделению, а затем и образующиеся включения не вызывают заметногоэффекта упрочнения. Несмотря на это, введение и марганца, и магния в алюминий полезно. Они повышают его прочность и коррозионную стойкость (при содержании магния не более 3%). Кроме того, сплавы с магнием более легкие, чем чистый алюминий.

Другие легирующие элементы

Также для улучшения некоторых характеристик алюминия в качестве легирующих элементов используются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0,01-0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике(кроме деталей реакторов), т.к. он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095-0,1%.

Висмут . Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0,01 — 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (>0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 — 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево — кадмиевых подшипниковых сплавах.

Кадмий. Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придает пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5-4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах — измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всем объеме.

Применение алюминиевых сплавов

Большинство алюминиевых сплавов имеют высокую коррозионную стойкость в естественной атмосфере, морской воде, растворах многих солей и химикатов и в большинстве пищевых продуктов. Последнее свойство в сочетании с тем, что алюминий не разрушает витамины, позволяет широко использовать его в производстве посуды . Конструкции из алюминиевых сплавов часто используют в морской воде. Алюминий в большом объеме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. Алюминий также широко применяется в машиностроении , т.к. обладает хорошими физическими качествами.

Но главная отрасль, в настоящее время просто не мыслимая без использования алюминия — это, конечно, авиация . Именно в авиации наиболее полно нашли применение всем важным характеристикам алюминия

Читайте также  Заточить ножи на электрорубанок
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]