Lm317t схема включения 12v

Lm317t схема включения 12v

Регулируемые стабилизаторы напряжения и тока LM317 (КР142ЕН12) и LM337
(КР142ЕН18) для источников и блоков питания.

Среди микросхем регулируемых стабилизаторов напряжения и тока одними из самых популярных являются ИМС LM317 и LM337. Благодаря своим приличным характеристикам, низкой стоимости и удобного для монтажа исполнения, эти микросхемы при минимальном наборе внешних деталей отлично справляются с функцией несложных регулируемых источников и блоков питания для бытовой и промышленной электронной аппаратуры.
Микросхемы идентичны по своим параметрам, разница заключается лишь в том, что LM317 является регулируемым стабилизатором положительного относительно земли напряжения, а микросхема LM337 — регулируемым стабилизатором отрицательного напряжения.

Аналогами стабилизатора LM317 на отечественном рынке является модификация КР142ЕН12, а LM337 — КР142ЕН18.

Если полутора ампер выходного тока покажется недостаточно, то LM317 можно заменить на LM350 с выходным током 3 ампера и LM338 — 5А. Схемы включения останутся точно такими же.

Для удобства описание поведём для более распространённого стабилизатора блока питания с положительной полярностью напряжения (LM317), но всё сказанное и нарисованное на схемах будет так же верно для стабилизаторов с минусовой полярностью (LM317). Однако важно заметить, что при смене полярности стабилизатора — необходимо также изменить на схемах: полярность включения всех диодов, электролитических конденсаторов, а также тип проводимости внешних транзисторов (в случае их наличия). И не стоит забывать, что цоколёвки у этих микросхем разные!

Начнём с главного:
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТАБИЛИЗАТОРОВ LM317, LM337 в корпусе TO-220:

Максимальное входное напряжение блока питания — 40 В;
Регулирование выходного напряжения — от 1,25 до 37 В;
Точность установки и поддержания выходного напряжения — 0,1%;
Максимальный ток нагрузки — 1,5 A;
Минимальный ток нагрузки — 3,5. 10 мА;
Наличие защиты от возможного короткого замыкания и перегрева;

Давайте не будем сильно отвлекаться на разнообразные любительские реализации стабилизаторов на LM317 и LM337, а сделаем основной упор на рекомендациях и схемах, приведённых в datasheet-ах на микросхемы. Типовая схема включения LM317 с функцией регулировки напряжения приведена на Рис.1

Рис.1 Типовая схема включения LM317

Диоды D1 и D2 предназначены для защиты микросхемы, а конкретно — быстрого и безопасного разряда конденсаторов в случае возникновения короткого замыкания (D1 — по входу, D2 — по выходу). При выходных напряжениях менее 25 В производитель ИМС допускает работу стабилизатора без использования защитных диодов.
Конденсатор С2 снижает уровень пульсаций на выходе микросхемы на 15 дБ. Увеличение номинала этого конденсатора свыше 10 МкФ не только не приведёт к существенному снижению пульсаций, но и окажет вредное влияние на скорость реакции стабилизатора на изменение выходного напряжения.

Номинал резистора R1 жёстко определяется в техническом паспорте как 240 Ом, хотя ничего плохого не случится, если выбрать его значение в диапазоне 200. 270 Ом.
Величина R2 вычисляется исходя из формулы Vout = Vref x (1+R2/R1) + Iadj x R2 , где
Vref ≈ 1,25В , а Iadj ≈ 50 мкА .

Онлайн калькулятор для расчёта стабилизатора напряжения на основе LM317 (LM337).
Выходное напряжение не может принимать значений ниже 1,25 В.

На Рис.2 изображена схема интегрального стабилизатора напряжения с функцией плавного пуска питания, собранная на всё том же регуляторе напряжения LM317 и тоже взятая из datasheet-а на микросхему.

Рис.2 Схема стабилизатора напряжения с функцией плавного пуска питания

В начальный момент включения источника питания конденсатор C1 разряжен и представляет собой КЗ. Напряжение на эмиттере транзистора близко к нулю, соответственно напряжение на выходе микросхемы минимально и составляет величину — около 1,2 В. По мере заряда конденсатора напряжение на эмиттере растёт, напряжение на выходе микросхемы — тоже. В какой-то момент напряжение на базе достигнет значения, при котором транзистор полностью закроется, и на выходе стабилизатора установится уровень напряжения, определяемый номиналами резисторов R1, R2.
При установке защитных диодов (как это сделано на Рис.1) ничто не мешает использовать эту схему и с более высокими выходными напряжениями.

Если возникла необходимость ввести в блок питания стабилизатор (ограничитель) тока нагрузки, то для этой цели также подойдёт ИМС LM317, причём схема получается ещё проще, чем в случае использования её в качестве стабилизатора напряжения.

Рис.3 Ограничитель тока на LM317

Такое устройство может быть полезно для зарядки аккумуляторов, питания светодиодов, ограничения тока нагрузки источника питания и т. д.
При выборе номинала сопротивления R1 в диапазоне 0,8. 125 Ом ограничение выходного тока будет происходить на уровнях: от 10 мА до 1,56 А, а формула, для расчёта конкретного значения тока выглядит следующим образом: I = Iadj + Vref/R1 ≈ 1,25/R1 .

Онлайн калькулятор для расчёта стабилизатора тока на основе LM317 (LM337).

Если необходимо поиметь в хозяйстве источник, как с регулировкой выходного напряжения, так и с ограничением выходного тока, то существует возможность использовать два варианта:
1. Соединить последовательно стабилизатор тока (Рис.3) и стабилизатор напряжения (Рис.1), либо
2. Либо использовать ещё одну схему из datasheet-а.

Рис.4 Схема стабилизатора с ограничением выходного тока

Область применения схемы, приведённой на Рис.4, декларируется производителем — как зарядное устройство для 6-вольтовых аккумуляторов, но её вполне можно расширить, подключив к выходу любую нагрузку и используя обвес, взятый с типовой схемы включения (Рис.1).
Ток ограничения (стабилизации) устройства рассчитывается исходя из формулы: I ≈ 0,6//R1 , А учитывая дополнительное падение напряжения на резисторе R1, при расчёте выходного напряжения в калькуляторе — следует вводить величину Uвых, на 0,6 В превышающую необходимое значение.

Теперь что касается умощнения микросхем. Здесь datasheet также предполагает 2 варианта:
1. Параллельное соединение микросхем, но не примитивное (как порой можно встретить на некоторых интернет просторах), а довольно сложное, посредством ОУ и дополнительного транзистора. Эту схему я не вижу особого смысла рассматривать ввиду того, что подобную задачу можно решить более гуманными методами.
2. Умощнение внешним транзистором (Рис.5):

Рис.5 Умощнение стабилизатора напряжения на LM317 внешним транзистором

Силовой умощняющий транзистор следует выбирать исходя из максимального тока нагрузки и максимальной мощности, рассеиваемой на нём.
До того момента, когда падение напряжения на резисторе R1 достигнет уровня 0,6. 0,7 В транзистор закрыт, и весь ток в нагрузку течёт через микросхему стабилизатора. При достижении указанного уровня падения напряжения транзистор приоткрывается и также начинает отдавать ток в нагрузку, разгружая тем самым микросхему. Чем больше ток — тем сильнее открыт транзистор, тем большее относительное значение тока через него протекает в нагрузку.
Главный вопрос, возникающий у радиолюбителя — какого номинала следует выбирать резистор.
Для начала надо задаться некой величиной тока, протекающего через ИМС стабилизатора Ireg , не слишком большой (чтобы микросхема не сильно грелась), но и не слишком малой (для сохранения её стабильной и устойчивой работы). Обычно величина это тока выбирается в пределах 0,1. 0,3 А.
Определившись с этим значением, следует выбрать транзистор, исходя из максимального тока нагрузки, с параметром β > 1.1 x Iнмакс / Ireg . Будет лучше, если запас усиления транзистора составит величину — 10. 20%.
Тогда значение R1 можно будет вычислить по следующей формуле:
R1 ≈ (β x Vбэ) / (Ireg x β — Iнмакс) , где Vбэ ≈ 0,7В для простых транзисторов и 1,4В — для составных.

Таким же способом можно умощнить и стабилизатор (ограничитель) тока нагрузки (Рис.6).

Рис.6 Умощнение стабилизатора тока на LM317 внешним транзистором

И под занавес приведу схему двуполярного источника питания с регулируемым напряжением (± 1,2. 35 В), опубликованную в одном из зарубежных источников (Рис.7).

Рис.7 Схема двуполярного блока питания

Для повышения надёжности устройства в него следует добавить пару защитных диодов по аналогии со схемой, изображённой на Рис.1.

LM317 и LM317T схемы включения, datasheet

Микросхема уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На основе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, для LM317 схема включения работает сразу, настройки не требуется.

Микросхемы ЛМ317 и LM317T datasheet полностью одинаковые, отличаются только корпусом. Никаких отличий или разницы нет, совсем нет.

Так же написал обзоры и datasheet других популярных ИМС TL431, LM358 LM358N, LM494. C хорошими иллюстрациями, понятными и простыми схемами.

  • 1. Характеристики
  • 2. Аналоги
  • 3. Типовые схемы включения
  • 4. Калькуляторы
  • 5. Схемы включения
  • 6. Радиоконструкторы
  • 7. Datasheet, даташит

Характеристики

Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.

  1. полный LM317, LM317T datasheet; .

Характеристики

LM317LM338LM350
Входное Вольт1,2 – 37В1,2 – 37В1,2 – 37В
Напряжение на выходедо 36Вдо 36Вдо 36В
Сила тока1,5А
Нагревдо 125°
Защитаот перегрева
от замыкания
Нестабильность на выходе0,1%

Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.

Приведу основные электрические характеристики из LM317 datasheet на русском . Не все знают технические термины на английском.

В даташите указана огромная сфера применения, проще написать где она не используется.

Аналоги

КР142ЕН12

Микросхем которые имеют практически такой же функционал много, отечественных и зарубежных. Добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллельно. Самый известный LM317 аналог, это отечественная КР142ЕН12.

  1. LM117 LM217 – расширенный диапазон рабочих температур от -55° до +150°;
  2. LM338, LM138, LM350 — аналоги на 5А, 5А и 3А соответственно;
  3. LM317HV, LM117HV — напряжение на выходе до 60V, если вам не достаточно стандартных 40V.

Полные аналоги:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Типовые схемы включения

Преобразователь с пониженными пульсациями LM317T

Регулируемый источник тока

Схема с предварительным стабилизатором

Регулятор 1,25 — 20 Вольт с регулируемым током

Параллельное подключение с одним регулятором

Схема для зарядки аккумуляторов на LM317T

Схема зарядки аккумулятора на 50мА

Схема плавного включения питания

Регулирование двумя LM317T синусоиды переменного тока

Зарядное устройство на 6V с ограничением Ампер

Параллельное подключение для увеличения мощности

Блок питания с большим током LM317T

Калькуляторы

Для максимального облегчения расчётов на основе LM317T разработано множество программ LM317 калькуляторов и онлайн калькуляторов. Указав исходные параметры сразу можно просчитать несколько вариантов и увидеть характеристики требуемых радиодеталей.

Программа для расчета источников напряжения и тока с учётом LM317 характеристик LM317T . Расчёт схем включения мощных преобразователей с использованием транзисторов, TL431, M5237. Так же ИМС 7805, 7809, 7812.

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Светодиодный драйвер

Светодиодный драйвер до 5А

Зарядное для аккумуляторов

Регулируемый двухполярный блок питания от 0 до 36В

Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.

Радиоконструкторы

Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от китайцев на Aliexpress. Такой конструктор оптимальный способ собрать устройство по схеме включения, не надо изготавливать плату и подбирать детали. Любой конструктор можно доработать по своему усмотрению, главное чтобы плата была. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.

Datasheet, даташит

Микросхема очень популярная, выпускает множеством производителей, включая китайских. Мои коллегам попадались ЛМ317 с плохими параметрами, которые не тянут заявленный ток. Покупали у китайцев, которые любят всё подделывать и копировать, при этом ухудшая характеристики.

Стабилизатор тока на lm317

Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

Основные технические характеристики LM317

Максимальный выходной ток 1.5А

Максимальное входное напряжение 40В

Выходное напряжение от 1.2В до 37В

Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.

Схема стабилизатора тока на lm317

Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

Сопротивление резистора R1 рассчитывается по формуле:

R1=1,2/Iнагрузки

Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

R1=1,2/0,1A=12 Ом.

То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

При увеличении или уменьшении напряжения ток остается стабильным.

Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

ТокR1 (стандарт)
0.02551 Ом
0.0524 Ом
0.07516 Ом
0.113 Ом
0.158.2 Ом
0.26.2 Ом
0.255.1 Ом
0.34.3 Ом
0.353.6 Ом
0.43 Ома
0.452.7 Ома
0.52.4 Ома
0.552.2 Ома
0.62 Ома
0.652 Ома
0.71.8 Ома
0.751.6 Ома
0.81.6 Ома
0.851.5 Ома
0.91.3 Ома
0.951.3 Ома
11.3 Ома

Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Читайте также  Как подсоединить лампочки последовательно
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]