Классификация сталей термическая обработка сталей

Классификация сталей термическая обработка сталей

Классификация сталей термическая обработка сталей

Технология обработки металлов
Элементы машиноведения

16. Классификация сталей. Термическая обработка сталей

Как вам уже известно, сталь — это сплав железа с углеродом и другими химическими элементами. По химическому составу стали подразделяются на углеродистые и легированные.

В углеродистой стали содержится 0,4. 2% углерода. Углерод повышает твердость стали, но увеличивает ее хрупкость и снижает пластичность.
Конструкционная углеродистая сталь бывает обыкновенного качества и качественная.

Сталь обыкновенного качества обозначается буквами Ст и цифрой от 0 до 7: Ст 0, Ст 1 и т.д. Цифры показывают порядковый номер марки стали. Чем больше цифра, тем выше содержание углерода и прочность стали. Из стали обыкновенного качества изготавливают строительные конструкции, гайки, болты, заклепки, трубы, листовой прокат и др.

Углеродистая качественная сталь обладает повышенной прочностью. Она обозначается двумя цифрами: 05, 08, 10, 20, 30 и т.д. Цифры показывают содержание углерода в сотых долях процента. Из этой стали изготавливают зубчатые колеса, валы, оси, шкивы и др.

Инструментальная углеродистая сталь обладает большей прочностью и твердостью, чем конструкционная, и применяется для изготовления молотков, зубил, ножниц по металлу, ножовочных полотен, напильников и др. Обозначается она: У10, У11, У12 и т.д. Цифры показывают содержание углерода в десятых долях процента.

При добавлении в сталь во время плавки других элементов ( хрома, никеля, вольфрама и др.) изменяются ее свойства. Одни элементы повышают прочность и твердость, другие — упругость, третьи делают сталь антикоррозионной и т.д. Стали, в которых есть эти элементы, называются легированными. Легирующие добавки в сталях обозначают буквами: X — хром, В — вольфрам, Н — никель, Г — марганец, Ф — ванадий, М — молибден и т.д. Например, в стали 40ХН 0,4% углерода и по одному проценту хрома и никеля.

Легированные конструкционные стали применяют для изготовления рессор, пружин, шестерен и др., а легированные инструментальные для изготовления режущего инструмента: фрез, зенкеров, плашек, метчиков и др.

Свойства сталей можно изменять с помощью теплового воздействия — термической обработки (термообработки). Она заключается в нагреве заготовки до определенной температуры, выдержке при этой температуре и последующем охлаждении. Температура нагрева зависит от вида термообработки и содержания углерода в стали.

Различают следующие виды термообработки: закалку, отпуск, отжиг.

При закалке металл нагревают до определенной температуры (например, до 800°С), выдерживают при этой температуре, а затем быстро охлаждают в воде, масле, водных растворах солей. Закалка повышает твердость и прочность стали, но вместе с тем повышается и ее хрупкость.

Хрупкость стали после закалки можно уменьшить с помощью отпуска. Отпуск представляет собой нагрев остывшей закаленной детали до определенной температуры (например, до 400. 500°С) с последующим охлаждением в воде или на воздухе. Отпуск повышает пластичность стали, что улучшает ее обрабатываемость.

При отжиге заготовку нагревают до определенной температуры, выдерживают при этой температуре и медленно, часто вместе с печью, охлаждают (в этом главное отличие от закалки). Отжиг резко снижает твердость стали, она становится мягче и лучше обрабатывается.

Углеродистые стали, содержащие менее 0,25. 0,3 % углерода, не закаливают из-за незначительного увеличения твердости и прочности. У сталей, содержащих более 0,3 % углерода, после закалки в несколько раз повышается твердость и прочность.

Проводить рассмотренные выше виды термообработки можно в школьных мастерских, пользуясь муфельными печами небольшого размера. Температуру закалки можно контролировать по цветам каления. При нагреве стальной заготовки она изменяет определенным образом свой цвет, поэтому по ее цвету приближенно устанавливают температуру, до которой она нагрета (табл. 3).

Температуру отпуска можно контролировать по цветам побежалости (табл. 4). Например, если при нагреве поверхность заготовки приобрела темно-синий оттенок, значит, она нагрета до температуры примерно 300°С.

На предприятиях термическую обработку материалов выполняют рабочие — термисты. Термист должен разбираться в свойствах металлов, хорошо знать режимы термообработки различных сплавов, умело пользоваться термическими печами, строго соблюдать правила безопасности.


Практическая работа

Ознакомление с термической обработкой стали

Внимание: пункты 2, 3, 5 выполняет учитель.

1. Закрепите в тисках образец из незакаленной стали (например, с содержанием углерода 0,6%) и проведите по ней несколько раз напильником. Сделайте вывод об обрабатываемости незакаленной стали.
2. Поместите образец в электрическую (муфельную) печь, нагретую до 800°С, и выдержите его 15. 20 мин. Температуру нагрева образца определите по табл. 3.
3. Опустите раскаленный образец в воду или масло.
4. Закрепите образец в тисках и попытайтесь обработать его напильником. Сделайте вывод об обрабатываемости закаленной стали.
5. Поместите образец в печь, нагретую до температуры 400. 550°С, и выдержите 15. 20 мин, после чего охладите в воде или на воздухе.
6. Опилите образец в тисках и сделайте вывод о его обрабатываемости после отпуска.

О
Углеродистая и легированная сталь, термическая обработка, закалка, отпуск, отжиг.

1. Сколько углерода содержится в углеродистой стали?
2. Чем отличаются углеродистые стали от легированных?
3. Где применяется инструментальная углеродистая сталь? Как она обозначается?

4. Где используются легированные конструкционные стали?

5. Что такое термическая обработка?

6. Как изменяются свойства стали при закалке?

7. Для какой цели выполняют отпуск сталей?

8. Что такое отжиг сталей и в чем он состоит?

Самородский П.С., Симоненко В.Д., Тищенко А.Т., Технология. Трудовое обучение: Учебник для учащихся 7 класса (вариант для мальчиков) общеобразовательной школы. / Под ред. В.Д. Симоненко.— М.: Вентана-Графф, 2003. — 192 е.: ил.

онлайн библиотека с учебниками и книгами, планы конспектов уроков по технологии, задания по технологии 7 класса скачать

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

План конспект урока: Классификация сталей. Термическая обработка сталей.
план-конспект урока по технологии (7 класс) на тему

Тема: Классификация сталей. Термическая обработка сталей.

Цели: изучить основные виды, свойства и назначения различных сталей. Научить отличать обрабатываемость сталей. Изучить основные приемы термообработки сталей.

Оснащение урока: таблицы по термообработке сталей, тиски, напильник, образцы сталей.

Объект и содержание работы: работа с учебником и образцами стали.

I. Вводная часть.

1. Повторение ранее пройденного материала.

  1. Учащимся предлагается вспомнить из курса VI класса об основных свойствах металлов.

— Какие металлы вы знаете?

— Какими свойствами обладают металлы?

— Какие изделия изготавливают из металлов?

  1. Сообщение цели урока.

II. Изложение программного материала.

Для начала учащимся демонстрируются изделия из различных видов сталей (уголок, пружина, фреза или метчик и т.д.).

Общие сведения о металлах и сплавах

Работая с заготовками из разных металлов, вы успели заметить, что металлы обладают различными свойствами: одни из них хрупкие, другие упругие, одни мягкие, другие более твердые. Для всех металлов характерен металлический блеск. Различаются металлы по цвету — медь, например, розово-красная, сталь — сероватого цвета. Металлы обладаю свойством проводить тепло и электрический ток. Знать свойства металлов надо для того, чтобы правильно выбрать материал для изготовления изделия.

В чистом виде металлы используются относительно редко. Больше всего они применяются в виде сплавов.

Сплавами металлов называются сложные вещества, полученные путем сплавления одною металла с другими или металла с неметаллическими элементами. Все металлы и сплавы принято делить на черные и цветные.

В группу черных металлов входят железо, чугун и сталь, в группу цветных все остальные металлы и сплавы.

Железо- металл серебристо-белого цвета с характерным блеском. Он пластичен, хорошо обрабатывается, широко распространен в природе, но в чистом виде почти не встречается. Железо находится в земной коре в составе соединения с кислородом и другими элементами. Эти соединения называют железными рудами. Из них получают железо, которое применяю в виде различных сплавов с углеродом — чугунов и сталей.

Чугун — сплав железа с углеродом, содержащий более 2% (обычно 3. 4.5%) углерода, а также примеси других элементов

Чугун является одним из самых дешевых и распространенных конструкционных материалов и широко применяется в машиностроении. Кроме того, из чугуна получают сталь.

Сталь- это сплав железа с углеродом, содержащий до 2,1 % углерода. Как и чугун, сталь содержит в себе примеси некоторых других элементов. Основное отличие стали от чугуна — это то. что сталь содержит меньшее количество углерода и примесей.

Сталь и чугун являются самыми распространенными материалами современной техники и производства. На их долю приходится основная масса всей металлической продукции.

Среди цветных металлов наиболее широкое применение имеют медь, алюминий и сплавы на их основе, а также олово, цинк и др.

Медь — металл розовато-красного цвета, обладающий электропроводностью и теплопроводностью, хорошей пластичностью, но сравнительно невысокой прочностью, хорошо обрабатывается. Применяется, прежде всего, в электропромышленности и химическом машиностроении. Сплавы меди обычно делят на две группы -латуни и бронзы.

Латунь сплав меди с цинком (цинка от 10 до 42%). Латунь отличается от меди большей прочностью.

Бронзам и называют сплавы меди с оловом или другими элементами, кроме цинка. В основном бронзы характеризуются высокой прочностью, хорошо обрабатываются резанием, обладают высокими литейными качествами и низким коэффициентом трения.

Алюминий — металл серебристо-белого цвета: гибкий, мягкий и вязкий, хорошо отливается и прокатывается в листы и проволоку. Алюминий широко используется в авиастроении, в электротехнике и при изготовлении посуды и других предметов быта. Большое распространение имеет алюминий в составе сплавов на его основе.

Олово—металл серебристо-белого цвета, весьма мягкий и пластичный. Олово можно легко раскатать в очень тонкие листы, называемые фольгой. Его применяют для покрытия тонких листов стали и получения белой жести. Олово входит в состав многих сплавов: припоев, применяемых для пайки и лужения, баббитов, бронз, латуни и т. д.

Цинк — это светло-серый металл с голубым оттенком. Обладает высокой коррозийной стойкостью. Благодаря этому качеству цинк применяется для покрытия стальных изделий в целях защиты их от коррозии, например для получения оцинкованного железа. Цинк входит в состав некоторых сплавов латуни и др.

Виды стали и ее применение

Сталь занимает особое место среди металлов и сплавов. Она служит материальной основой практически всех отраслей техники и производства. В зависимости от состава стали подразделяются на углеродистые и легированные.

Углеродистые стали — это сплавы железа с углеродом, в состав которых входят некоторые обычные примеси. Углерод придает стали твердость, но увеличивает хрупкость и снижает пластичность.

Легированные стали — сплавы, в которые, кроме железа, углерода и обычных примесей, входят так называемые легирующие элементы (хром, никель, вольфрам и др.). Добавление их в сталь во время плавки изменяет ее свойства. Одни элементы повышают твердость и прочность, другие — упругость, третьи повышают коррозийную стойкость стали, улучшают другие полезные свойства и качества.

По назначению стали делят на конструкционные, инструментальные и специальные с особыми свойствами.

Конструкционные стали — уже их название говорит о том, что они применяются для изготовления различных металлических конструкций, деталей механизмов и машин и т. д. Конструкционная углеродистая сталь бывает обыкновенного качества и качественной.

Сталь обыкновенного качества обладает невысокой прочностью и применяется для изготовления болтов, шайб, мягкой проволоки, заклепок и т. д.

Качественная углеродистая сталь более прочная, и из нее изготовляют зубчатые колеса, шкивы и другие детали машин.

Все стали маркируются, т. е. имеют условные обозначения, которые показывают вид стали, ее состав, свойства и т. д. (см. приложение).

Конструкционная углеродистая сталь обыкновенного качества маркируется буквами «Ст.» и порядковым номером от о до 7. Например, Ст.О, Ст.1 и т.д. Чем выше номер стали, тем больше в ней содержание углерода и выше прочность. Качественная углеродистая сталь обозначается цифрами, указывающими содержание углерода в сотых долях процента. Например, «Сталь 45» — сталь, содержащая 0,45 % углерода. Более подробно по марке стали можно определить ее состав и свойства, пользуясь специальным справочником.

Инструментальные углеродистые стали тоже подразделяются на качественные и высококачественные.

Инструментальные стали отличаются от конструкционных большей твердостью и прочностью. Они применяются для изготовления различного режущего и контрольно-измерительного инструмента.

Инструментальные качественные и высококачественные стали маркируются буквами и цифрами, указывающими содержание углерода в десятых долях процента. Например, У8 и У8А — углеродистая сталь, 8—0,8 % углерода, А — высококачественная сталь.

Специальные стали — это стали с особыми свойствами: нержавеющие, износостойкие и др.

Широко и разнообразно применение легированных сталей. Конструкционные и инструментальные легированные стали маркируются сочетанием цифр и букв. Цифры, стоящие в начале марки, указывают среднее содержание углерода в десятых долях процента для инструментальных сталей и в сотых долях процента для конструкционных. Если цифры отсутствуют, то содержание углерода около 1 %. Легирующие элементы, входящие в сталь, обозначаются в марке легированной стали буквами русского алфавита: хром — X, никель — Н, вольфрам — В, марганец —Г, ванадий — Ф, алюминий — Ю и т.д. Цифры после букв указывают среднее содержание этих элементов в процентах. Если цифры отсутствуют, то содержание элемента около 1%. Буква А в конце марки означает, что сталь высококачественная. Пример марки легированной стали: 12Х2Н4А — это высококачественная хромоникелевая сталь, содержащая 0,12 % углерода, 2 % хрома, 4 % никеля. Другой пример марки: ХВГ — хромовольфрамомарганцевая сталь, в которой углерода и легирующих элементов примерно по 1 %.

В школьных учебных мастерских используется для режущих инструментов быстрорежущая сталь. Она обозначается буквой Р с цифрой. Цифра указывает процентное содержание в стали вольфрама. Например: Р18 — быстрорежущая сталь, содержащая 18 % вольфрама. Если в марке указаны другие буквы и цифры, то они показывают процентное содержание в стали других легирующих элементов. Например: Р6М5 быстрорежущая сталь с содержанием вольфрама 6 %, молибдена 5 %.

Термообработка — это нагрев стали до определенной температуры, выдержка и охлаждение. Различают три вида термообработки: закалка, отпуск, отжиг.

Теперь давайте рассмотрим эти три вида термообработки.

Закалка — это нагрев металла до определенном температура, выдержка при этой температуре и быстрое охлаждение в воде, масле или специальных растворах.

Закалка повышает твердость и прочность, но повышает хрупкость.

Отпуск позволяет снизить хрупкость и увеличить пластичность. Отпуск — это нагрев до 400 — 500°С и охлаждение в воде или на воздухе.

Отжиг снижает твердость стали и делает ее мягче. При отжиге заготовку нагревают, выдерживают при этой температуре и медленно, часто вместе с печью, охлаждают.

Для выполнения операций по термообработке в условиях мастерской применяю муфельную печь. Температуру закалки можно контролировать по цветам каления (см. таблицу 1), а температуру отпуска — но цветам побежалости (см. таблицу 2)

Термическая обработка стали: описание, виды

Термообработка металла является важной частью производственного процесса в цветной и чёрной металлургии. После этой процедуры материалы приобретают необходимые характеристики. Термообработку использовали довольно давно, но она была несовершенна. Современные методы позволяют достичь лучших результатов с меньшими затратами, и снизить стоимость.

Особенности термической обработки

Для придания нужных свойств металлической детали она подвергается термической обработке. Во время этого процесса происходит структурное изменение материала.

Металлические изделия, используемые в хозяйстве, должны быть устойчивыми к внешнему воздействию. Чтобы этого достичь, металл необходимо усилить при помощи воздействия высокой температуры. Такая обработка меняет форму кристаллической решётки, минимизирует внутреннее напряжение и улучшает его свойства.

Виды термической обработки стали

Термообработка стали сводится к трём этапам: нагреву, выдержке и быстрому охлаждению. Существует несколько видов этого процесса, но основные этапы у них остаются одинаковыми.

Выделяют такие виды термической обработки:

  • Техническая (отпуск, закалка, криогенная обработка, старение).
  • Термомеханическая, при которой используют не только высокую температуру, но и физическое воздействие на металл.
  • Химико-термическая включает в себя термическую обработку металла с последующим воздействием на поверхность азотом, хромом или углеродом.

Отжиг

Это производственный процесс нагрева металла до заданной температуры, а затем медленного охлаждения, которое происходит естественным путём. В результате этой процедуры устраняется неоднородность металла, снижается внутреннее напряжение, и уменьшается твёрдость сплава, что значительно облегчает его переработку. Существует два вида отжига: первого и второго рода.

При отжиге первого рода фазовое состояние сплава изменяется незначительно. У него есть разновидности:

  • Гомогенизированный — температура составляет 1100−1200 °C, металл выдерживается от 7−14 часов в таких условиях.
  • Рекристаллизационный — температура отжига 100−200 °C, эта процедура используется для клёпаной стали.

При отжиге второго рода происходит фазовое изменения металла. Процесс имеет несколько видов:

  • Полный отжиг — металл нагревается на 25−40 °C выше критического значения для этого материала и охлаждается со специальной скоростью.
  • Неполный — сплав нагревается до критической точки и долго остывает.
  • Диффузионный — отжиг производится при температуре 1100−1200 °C.
  • Изотермический — нагрев металла происходит как при полном отжиге, но охлаждение ниже критической температуры, остывание на открытом воздухе.
  • Нормализованный — производится полный отжиг металла с остыванием на воздухе.

Закалка

Это процесс манипуляции металлом для достижения мартенситного превращения, чем обеспечивается повышенная прочность и уменьшенная пластичность изделия. При закалке сплав нагревают до критического значения, как и при отжиге, но процесс охлаждения производится значительно быстрее, и для этого используют ванную с жидкостью. Существует несколько видов закалки:

  • Закалка в одной жидкости, для мелких деталей используют масло, а для крупных — воду.
  • Прерывистая закалка — понижение температуры происходит в два этапа: резкое охлаждение до температуры в 300 °C, с помощью воды, а затем изделие помещают в масло или на открытый воздух.
  • Ступенчатая — при достижении металла необходимой температуры, его охлаждают в расплавленных солях, а затем на открытом воздухе.
  • Изотермическая — сходный со ступенчатой, отличается во времени выдержки.
  • Закалка с самоотпуском, сплав охлаждается не полностью, оставляется тёплый участок в середине. В результате металл получает повышенную прочность и высокую вязкость. Такое сочетание отлично подходит для ударных инструментов.

Неправильно сделанная закалка может привести к появлению таких дефектов:

  • обезуглероживание;
  • трещины;
  • коробление или поводки.

Главная причина поводок и трещин — неравномерное изменение размера детали при охлаждении или нагреве. Они также могут возникнуть при резком повышении прочности в отдельных местах. Лучший способ избежать этих проблем — медленное охлаждение металла до значения мартенситного превращения.

Поводка и коробление возникает при неравномерном охлаждении искривлённых деталей. Эти дефекты довольно невелики и могут быть исправлены шлифованием. Предварительный отжиг деталей и их постепенный и равномерный нагрев помогут избежать коробления.

Обезуглероживание металла происходит в результате выгорания углерода при длительном нагреве. Интенсивность процесса зависит от температуры нагрева, чем она выше, тем быстрее процесс. Для исправления деталь нагревают в нейтральной среде (муфельной печи).

Окалины на поверхности металла приводят к угару и деформации изделия. Это снижает скорость нагрева и делает механическую обработку более трудной. Окалины удаляются химическим или механическим способом. Для того чтобы избежать их появления, нужно использовать специальную пасту (100 г жидкого стекла, 25 г графита, 75 г огнеупорной глины, 14 г буры, 100 г воды, 30 г карборунда). Состав наносится на изделия и оставляется до полного высыхания, а затем нагревается как обычно.

Отпуск

Он смягчает воздействие закалки, снимает напряжение, уменьшает хрупкость, повышает вязкость. Отпуск производится с помощью нагрева детали, закалённой до критической температуры. В зависимости от значения температуры можно получить состояния тростита, мартенсита, сорбита. Они отличаются от похожих состояний в закалке по свойствам и структуре, которая более точечная. Это увеличивает пластичность и прочность сплава. Металл с точечной структурой имеет более высокую ударную вязкость.

В зависимости от температуры различают такие виды отпуска: низкий, средний, высокий.

Для точного определения температуры используют таблицу цветов. Плёнка окислов железа придаёт металлу разные цвета. Она появляется, если изделие очистить от окалин и нагреть до 210 °C, при повышении температуры толщина плёнки увеличивается.

При низком отпуске (температура до 300 °C) в составе сплава остаётся мартенсит, который изменяет структуру материала. Кроме того, выделяется карбид железа. Это увеличивает вязкость стали и уменьшает её твёрдость. При низком отпуске металл охлаждают в соляных и масляных ваннах.

Высокий отпуск значительно улучшает механические свойства стали, увеличивает вязкость, пластичность, прочность. Её широко используют для изготовления рессор, шатунов двигателей, кузнечных штампов, осей автомобилей. Для мелкозернистой легированной стали отпуск проводят сразу после нормализации.

Чтобы увеличить обрабатываемость металла, его нормализацию производят при высокой температуре (970 °C), что повышает его твёрдость. Для уменьшения этого параметра делают высокий отпуск.

Криогенная обработка

Изменения структуры металла можно добиться не только высокой температурой, но и низкой. Обработка сплава при температуре ниже 0 °C широко применяется в разных отраслях производства. Процесс происходит при температуре 195 °C.

Читайте также  Самодельный циклонный фильтр для ...

Плюсы криогенной обработки:

  • Снижает количество аустенита, что придаёт устойчивость размерам деталей.
  • Не требует последующего отпуска, что сокращает производственный цикл.
  • После такой обработки детали лучше поддаются шлифовке и полировке.

Химико-термическая обработка

Химико-термическая обработка включает в себя не только воздействие с помощью высокой температуры, но и химическое. Результатом этой процедуры является повышенная прочность и износостойкость металла, а также придание огнестойкости и кислотоустойчивости.

Различают такие виды обработки:

  • Цементация.
  • Азотирование.
  • Нитроцементация.
  • Борирование.

Цементация стали — представляет собой процесс дополнительной обработки металла углеродом перед закалкой и отпуском. После проведения процедуры повышается выносливость изделия при кручении и изгибе.

Перед началом цементации производится тщательное очищение поверхности, после чего её покрывают специальными составами. Процедуру производят после полного высыхания поверхности.

Различают несколько видов цементации: жидкая, твёрдая, газовая. При первом виде используют специальную печь-ванную, в которую засыпают 75% соды, 10% карбида кремния, 15% хлористого натрия. После чего изделие погружают в ёмкость. Процесс протекает в течение 2 часов при температуре 850 °C.

Твёрдую цементацию удобно выполнять в домашней мастерской. Для неё используют специальную пасту на основе кальцинированной соды, сажи, щавелево-кислого натрия и воды. Полученный состав наносят на поверхность и ждут высыхания. После этого изделие помещают в печь на 2 часа при температуре в 900 °C.

При газовой цементации используют смеси газов, содержащие метан. Процедура происходит в специальной камере при температуре в 900 °C.

Азотирование стали — процесс насыщения поверхности металла азотом при помощи нагрева до 650 °C в аммиачной атмосфере. После обработки сплав увеличивает свою твёрдость, а также приобретает сопротивление к коррозии. Азотирование, в отличие от цементации, позволяет сохранить высокую прочность при больших температурах. А также изделия не коробятся при охлаждении. Азотирование металла широко применяется в промышленности для придания изделию износостойкости, увеличения твёрдости и защиты от коррозии.

Нитроцементация стали заключается в обработке поверхности углеродом и азотом при высокой температуре с дальнейшей закалкой и отпуском. Процедура может осуществляться при температуре 850 °C в газовой среде. Нитроцементацию используют для инструментальных сталей.

При борировании стали на поверхность металла наносят слой бора. Процедура происходит при температуре 910 °C. Такая обработка используется для повышения стойкости штампового и бурового инструментов.

Термомеханическая обработка

При использовании этого метода применяют высокую температуру и пластическую деформацию. Различают такие виды термомеханической обработки:

  • Высокотемпературная.
  • Низкотемпературная.
  • Предварительная.

При высокотемпературной обработке деформация металла происходит после разогрева. Сплав подогревают выше температуры рекристаллизации. После чего производится закалка с отпуском.

Высокотемпературная обработка металла:

  • Повышает вязкость.
  • Устраняет отпускную хрупкость.

Такой обработке подвергают конструкционные, инструментальные, углеродистые, пружинные, легированные стали.

При низкотемпературной обработке заготовку после охлаждения выдерживают при температуре ниже значения рекристаллизации и выше мартенситного превращения. На этом этапе делают пластическую деформацию. Такая обработка не даёт устойчивости металлу при отпуске, а для её осуществления необходимо мощное оборудование.

Для осуществления термомеханической обработки необходимо применять специальные приспособления для давления, нагрева и охлаждения заготовки.

Термообработка цветных сплавов

Цветные металлы отличаются по своим свойствам друг от друга, поэтому для них применяют свои виды термообработки. Для выравнивания химического состава меди её подвергают рекристаллизационному отжигу. Латунь обрабатывают при низкой температуре (200 °C). Бронзу подвергают отжигу при температуре 550 °C. Магний закаляют, отжигают и подвергают старению, алюминий подвергают похожей обработке.

В чёрной и цветной металлургии широко применяются разные виды термической обработки металлов. Их используют для получения нужных свойств у сплавов, а также экономии средств. Для каждой процедуры и металла подбираются свои значения температуры.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]