Какое напряжение после диодного моста

Какое напряжение после диодного моста

Какое напряжение после диодного моста

Всем привет. Сразу перейду к делу.
Вот схема:

меня интересует вопрос какое напряжение будет на выходе диодного моста (VD1) и какое напряжение будет в точке 1* ?
Заранее огромное спасибо, что хотя бы посмотрели в данный топик

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Рассмотрим особенности, характеристики и технологии проектирования продукции RECOM: AC/DC-преобразователи для установки на плату и для внешнего монтажа, изолированные DC/DC-преобразователи, импульсные регуляторы и силовые модули, а также средства отладки для поддержки разработчиков и ускорения выхода разработок на рынок.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

Создать интеллектуальный пожарный датчик, который будет не только оповещать о возгорании, а способен легко интегрироваться в системы умного дома или предприятия и выполнять ряд дополнительных действий, возможно с компонентами STMicroelectronics: высокопроизводительным радиочастотным трансивером S2-LP и малопотребляющим усилителем TSV629x. Рассмотрим подробнее это решение, отладочные комплекты и программный пакет ST.

12 В, то тогда нужно умножать на 1,41.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

Кстати, С3 выйдет из строя, если так подключить, его максимально допустимое напряжение всего 10 В. Необходимо 16 В, или, если переменка 12 В, то 20 В.

Ещё ёмкость этого С3 очень мала. Необходимо хотя бы 470 мкФ. Хотя, конечно, всё зависит от частоты выпрямляемого напряжения, от потребляемого тока и напряжения стабилизации.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

_________________
Собрали и смело включайте, лишнее выгорит!

_________________
Собрали и смело включайте, лишнее выгорит!

Вас же отправили читать про амплитудное и действующие значения. Видимо, вы не удосужились.

_________________
[ Всё дело не столько в вашей глупости, сколько в моей гениальности ] [ Правильно заданный вопрос содержит в себе половину ответа ]
Могу не отвечать пару месяцев, не беспокойтесь.

Дык читаю(например вот http://www.alast.ru/it/pt.html), но всё равно не понятно (

311 В, Um=Uд√2*=220*√2

311 В! Само значение выражения 220 В пошло от кратного значения напряжению первых гальванических аккумуляторных кислотных элементов с уровнем напряжения в 2,2 В. Приборы же стрелочного типа, применяемые для измерения напряжений и токов могут измерять только действующие начения перепменного тока и среднего значения пульсирующих постоянных напряжений — в зависимости от физической системы измерительного прибора и являются весьма инерционными элементами, и потому — не в состоянии показывать быстоменяющиеся изменения на переменном токе, да и глаз наш их не заметил бы.

Т.е действительное напряжение, это некая «фикция» которая введена для «приравнивания по тепловому эффекту»? В розетке

Помогите с Зарядкой АКБ

Всем привет, увидел в интернете схему зарядки акб на трансформаторе от старых телевизоров ТС-180 и вспомнил что такой у меня есть.
Собрал по схеме, с трансформатора получаем 12.8-13 В, а на выходе с диодного моста 11.2-11.5.Подскажите пожалуйста что можно сделать, ведь данного напряжения не хватит для зарядки АКБ.

Метки: зарядка

Комментарии 168

Если есть желание, переделайте БП от компьютера, получится хорошее зарядное. Доработок минимум,
в инете инфы полно. Советую.Удачи

Так, хочу написать своё ИМХО, т.к. это элементарная тема, и её почему-то мало кто понимает.
И так, на выходе у вас среднее значение 11.2-11.5 В, это с учетом падения напряжения на диодном мосту. До моста следовательно действующее значение 11,2(11,5) + 2*0,7=12,6 (12,9). Это именно действующее или эффективное значение значение напряжения. Его можно вычислить через интеграл от тока в квадрате по времени. Амплитудное значение получится путем умножения на 2^0.5=1,4142, т.е. 12,9*1,4142=18,2433 В, такое напряжение получится если подключить конденсатор, который заряжается до амплитудного значения. НО, это если конденсатор не разряжаю, т.е. без нагрузки. Когда подключаем нагрузку, то
во-первых амплитудное значение понизится, т.к. будет просадка на всех элементах.
во-вторых, не забываем, что чем выше напряжение на аккуме, тем ниже разность между напряжением заряда и напряжением аккума, и тем ниже ток.
в-третьих, чем выше напряжение аккума, тем меньшая часть полусинусоиды будет использована для заряда аккума, и тем меньше во времени ток будет протекать через аккум.
Конденсатор конечно будет повышать ток в первичной цепи, таким образом подтягивая напряжение, но этот эффект будет тем меньше, чем выше напряжение на аккумуляторе.
Тут можно ещё много чего писать, кому надо могу на доске написать и сфотать, благо я ТОЭ не первый год преподаю, но это по желанию.
А здесь, приведу простые примеры в мультисиме.
Предлагаемая многими схема, с диодным мостом и конденсатором, с учетом внутренних сопротивлений аккумулятора и трансформатора, т.е. схема замещения.
Схема savepic.su/6794265.jpg
Смотрим амперметр справа, в цепи аккумулятора.
Обратите внимание, конденсатор 10 000 мкф, сопротивление трансформатора 0,5 Ом — это ещё с запасом, реально оно больше в указанном автором, сопротивление аккума 0,1 Ом, примерно соответствует.
В итоге ток всего 0,85 А.
Если понизить напряжение аккумулятора, ток возрастет, но не сильно. Смотрите
savepic.su/6785049.jpg
savepic.su/6784025.jpg
С одной стороны результат есть, но как видите ток ограничен не трансформатором, а именно схемным решением. Получится зарядник размером с табурет и током чуть больше 2 А, когда аккум разряжен, и меньше 1 А при более чем 50 заряда. Заряжать будете трое суток.
Поэтому, я предложил вариант с умножителем, смотрите:
savepic.su/6788121.jpg
savepic.su/6777881.jpg
savepic.su/6780953.jpg
Как видите, можно получить ток заряда достаточно большой величины. И величина тока будет зависеть от номиналов конденсаторов. Чем больше ёмкость конденсаторов, тем выше ток. Смотрите:
savepic.su/6780953.jpg
savepic.su/6767641.jpg
Хотя, конечно при использовании умножителя ток на трансформаторе будет значительно выше.

Так же, хорошие варианты тут предложили, это домотать обмотку, чтобы повысить напряжение.

Прошу только конструктивное обсуждение, и обоснованные аргументы.

220 В после выпрямления 300 В не хватает для работы схемы — тоже умножитель ставлю. Почитайте приключенческую историю, как я решил вспомнить институтские годы спустя 25 лет:
www.drive2.ru/b/4899916394579136451/

Интересно, спасибо, почитаю))))

Так, хочу написать своё ИМХО, т.к. это элементарная тема, и её почему-то мало кто понимает.
И так, на выходе у вас среднее значение 11.2-11.5 В, это с учетом падения напряжения на диодном мосту. До моста следовательно действующее значение 11,2(11,5) + 2*0,7=12,6 (12,9). Это именно действующее или эффективное значение значение напряжения. Его можно вычислить через интеграл от тока в квадрате по времени. Амплитудное значение получится путем умножения на 2^0.5=1,4142, т.е. 12,9*1,4142=18,2433 В, такое напряжение получится если подключить конденсатор, который заряжается до амплитудного значения. НО, это если конденсатор не разряжаю, т.е. без нагрузки. Когда подключаем нагрузку, то
во-первых амплитудное значение понизится, т.к. будет просадка на всех элементах.
во-вторых, не забываем, что чем выше напряжение на аккуме, тем ниже разность между напряжением заряда и напряжением аккума, и тем ниже ток.
в-третьих, чем выше напряжение аккума, тем меньшая часть полусинусоиды будет использована для заряда аккума, и тем меньше во времени ток будет протекать через аккум.
Конденсатор конечно будет повышать ток в первичной цепи, таким образом подтягивая напряжение, но этот эффект будет тем меньше, чем выше напряжение на аккумуляторе.
Тут можно ещё много чего писать, кому надо могу на доске написать и сфотать, благо я ТОЭ не первый год преподаю, но это по желанию.
А здесь, приведу простые примеры в мультисиме.
Предлагаемая многими схема, с диодным мостом и конденсатором, с учетом внутренних сопротивлений аккумулятора и трансформатора, т.е. схема замещения.
Схема savepic.su/6794265.jpg
Смотрим амперметр справа, в цепи аккумулятора.
Обратите внимание, конденсатор 10 000 мкф, сопротивление трансформатора 0,5 Ом — это ещё с запасом, реально оно больше в указанном автором, сопротивление аккума 0,1 Ом, примерно соответствует.
В итоге ток всего 0,85 А.
Если понизить напряжение аккумулятора, ток возрастет, но не сильно. Смотрите
savepic.su/6785049.jpg
savepic.su/6784025.jpg
С одной стороны результат есть, но как видите ток ограничен не трансформатором, а именно схемным решением. Получится зарядник размером с табурет и током чуть больше 2 А, когда аккум разряжен, и меньше 1 А при более чем 50 заряда. Заряжать будете трое суток.
Поэтому, я предложил вариант с умножителем, смотрите:
savepic.su/6788121.jpg
savepic.su/6777881.jpg
savepic.su/6780953.jpg
Как видите, можно получить ток заряда достаточно большой величины. И величина тока будет зависеть от номиналов конденсаторов. Чем больше ёмкость конденсаторов, тем выше ток. Смотрите:
savepic.su/6780953.jpg
savepic.su/6767641.jpg
Хотя, конечно при использовании умножителя ток на трансформаторе будет значительно выше.

Так же, хорошие варианты тут предложили, это домотать обмотку, чтобы повысить напряжение.

Прошу только конструктивное обсуждение, и обоснованные аргументы.

Можно вопрос, у меня такой же транс на 12-12,5В вторички.
А без конденсаторов в схеме, напряжение на АКБ повысится в конце заряда из расчета 12*1,41=16,9В
Ведь АКБ тоже в некотором роде конденсатор?

Конечно повысится, амплитудное значение как вы и сказали будет равно 12*2^0.5, просто ток заряда будет очень низким. Акб все-таки не конденсатор, конденсатор обладает обладает практически нулевым внутренним сопротивлением и другой зависимостью напряжения заряда/разряда от времени. Но так — да, повышаться будет!

Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.
/>
Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax

где: π — константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – Uобр ;

— максимальный ток диода – Imax ;

— прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Читайте также  Самодельные тиски из кусков швеллера
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]