Сетевой фильтр своими руками
Представляем очень простой фильтр подавления помех электросети 220 В. Фильтр состоит из основного фильтрующего конденсатора 470nF, разрядного резистора 560K, двух фильтрующих катушек с сердечником, двух конденсаторов Cy 4.7nF и конденсатора на выходе Cx 100nF. Сетевой фильтр имеет защиту от перегрузки по току в виде предохранителя на выходе.
Схема фильтра защиты от сетевых помех
Этот фильтр – очень простая и аккуратная конструкция. В плане усовершенствования конструкции он может включать в себя дроссель на тороидальном сердечнике, защиту от перенапряжения на термисторах и варисторах.
Дроссели здесь использованы от фильтра EMI / RFI от импульсного источника питания, естественно дросселя с обмотками, намотанными на одно ядро, конечно будут в приоритете для такого фильтра, но не у каждого они есть (и есть желание грамотно намотать их), поэтому выбран упрощенный вариант – все равно будет отличная фильтрация.
Резистор немного нагревается, так что желательно заменить его более мощным, потому что с некоторым увеличением напряжения сети выше 250 В он может нагреться уже значительно.
Плавкий предохранитель лучше чтоб находился за розеткой, чтобы конденсаторы не вызывали пожар при коротком замыкании в случае сильного перенапряжения. По возможности добавьте варисторы высокой энергии для защиты от перенапряжения. Что касается резистора, это должен быть металлизированный резистор из высоковольтной серии. Вот пример промышленного фильтра:
Использование небольших расстояний между дорожками платы также оправдано, особенно когда речь идет о защите от перенапряжения. На приведенном ниже рисунке показано установленное на заводе решение по защите от перенапряжения, конечно же это не заменяет искровой разрядник, но как отсутствие какой-либо защиты вообще обеспечит большие потери в случае возможной проблемы.
Этот высокоэнергетический искровой промежуток, так называемая молниезащита. Его задача – взять на себя и уничтожить большую часть энергии в случае повреждения варистора. Предполагается, что в случае разряда высокой энергии между электродами искрового промежутка возникает дуга, вызывающая не только потерю большей части энергии, но и распыление медных дорожек, вызывающих металлизацию зазора и, следовательно, короткое замыкание на землю. Условием правильной работы является требование подключения физического заземления, а также автоматических предохранителей и выключателей остаточного тока. Такие фильтры и подобные схемы искрового разрядника находятся практически на любом оборудовании, таком как сетевые фильтры, источники питания, инверторы, как правило имеющие физическое соединение с землей.
К сожалению, когда кажущееся заземление построено с использованием конденсаторов и варисторов, которые дополнительно подключены к выходной массе источника питания, это обычно приводит к повреждению питаемого оборудования. В общем это соответствует условиям противопожарной защиты, предотвращая воспламенение низкотемпературных компонентов, что может вызвать пожар.
Пути улучшения схемы фильтра
Итого, если вы планируете повторить данную схему, вот несколько дополнений:
- Разрядный резистор взять на более высокую мощность.
- Предохранитель лучше должен находиться перед схемой, а не за ней.
- Интервалы изоляции между дорожками слишком маленькие, надо увеличить.
- Дроссель следует использовать один – с обмотками, намотанными на общий сердечник в двух направлениях.
Плата имеет размеры 80 x 50 мм, ширина соответствует электрической розетке IEC C14. Все сделано из легкодоступных и имеющихся у многих радиоэлементов, поэтому стоимость строительства составила 0 руб.
Сетевой фильтр своими руками
Работа электротехнических и электронных устройств происходит за счёт питания сетевым током. Энергопоток через провода приносит с собой сателлитные электромагнитные поля. Они несут угрозу точности выполнения своих функций абонентами электросети. Решить этот вопрос могут сетевые фильтры (СФ). Их всегда можно купить в виде сетевых удлинителей. Зная схему сетевого фильтра, устройство несложно собрать своими руками.
Принцип работы сетевого фильтра
Напряжение переменного тока в сети 220 в изменяется в синусоидальном виде. Правильная форма электрического импульса «загрязняется» электромагнитными помехами. Синусоида выглядит в виде изгибающейся линии чистого сигнала, окружённой вязью блуждающих токов, вызванных фазными перекосами, подсадками и всплесками напряжения.
Сопровождающие помехи влияют на чувствительные компоненты электронных схем различных приборов и аппаратуры. Возникает проблема очистки тока от паразитных образований. Для этого применяют сетевой фильтр (СФ).
СФ встраивают между источником сетевого тока и потребителями. Он состоит из соединённых в определённом порядке дросселей и конденсаторов. Работа фильтра – выстраивание индуктивного сопротивления катушек, не пропускающего помехи высокой частоты. Ёмкости устройства отсекают нежелательные помехи. Конденсаторы замыкают цепь и не пропускают паразитные импульсы.
Устройство простого сетевого фильтра
СФ бывают двух видов:
- Встроенные.
- Стационарные – многоканальные.
Встроенные
Компактные платы СФ являются частью внутреннего устройства различного электронного оборудования. Ими оснащается компьютерная и другая сложная техника.
На фото видно устройство СФ. На плате установлены следующие детали:
- VHF – конденсатор;
- тороидальный дроссель;
- добавочные конденсаторы;
- варистор;
- индукционные катушки;
- термический предохранитель.
Варистором называют резистор с переменным сопротивлением. При превышении нормативного порога напряжения (280 в) его сопротивление может уменьшиться в десятки раз. Варистор выполняет функцию защиты от импульсного перенапряжения.
Стационарные – многоканальные
Корпус прибора имеет несколько розеток. Благодаря этому, есть возможность подключить через фильтр всю имеющуюся электротехнику в одном помещении к одной розетке. Для очистки от радиопомех высокой частоты применяется простой LC-фильтр. Несгораемые термопредохранители предотвращают скачки напряжения. В некоторых моделях применяются одноразовые плавкие предохранители.
Самостоятельное изготовление сетевого фильтра
Сделать самый простой сетевой фильтр своими руками в домашних условиях радиолюбителю будет совсем не трудно. Для этого нужно встроить небольшую схему внутрь корпуса сетевого удлинителя с несколькими розетками. На нижнем рисунке показано, как это сделать.
Устанавливают СФ в удлинителе следующим образом:
- Вскрывают корпус сетевого удлинителя.
- В параллельные ветви после выключателя и варистора впаивают резисторы R1, R2 и дроссели (индуктивные катушки) L1, L2.
- Затем ветви поочерёдно замыкают через конденсатор С1 и один резистор R3.
- Установка концевого конденсатора С2 может быть сделана в любом месте между розетками.
Важно! Если внутри корпуса удлинителя не найдётся места для второго конденсатора С2, то можно обойтись без него. Достаточно скорректировать параметры С1.
Дроссели применяются с незамкнутыми ферритовыми сердечниками индуктивностью от 10 мкГн. Конденсаторы подбираются в диапазоне 0,22-1 мкФ. Сопротивление резисторов коррелируют с планируемой мощностью потребителей. При нагрузке 500 Вт потребуются резисторы 0,22 Ом. Сопротивление R3 должно быть не меньше 500 кОм.
Видоизменённая схема
Вышеописанную схему нередко модернизируют. Применяя катушки с другими параметрами, обходятся без резисторов. Для этого берут дроссели с высокой индуктивностью – 200 мкГн. Вместо старой ёмкости впаивают конденсатор, рассчитанный на 280 в.
Схема СФ защиты от сетевых помех
Типовая схема сетевого фильтра является основой всех устройств такого типа за исключением дополнительных мелочей. Классикой является подключение к точкам: Земля, Фаза и Ноль. На входе устанавливается варистор VDR 1. Он подавляет всплески напряжения сетевого тока. При высоком скачке напряжения сопротивление варистора резко падает, этим он не пропускает помеху далее по схеме.
Для гашения небольших изменений напряжения используются дроссель Tr1 и три ёмкости С. Конденсаторы С1, С2 и С3 – реактивные радиодетали, постоянно меняющие уровень сопротивления. Оно при изменении частоты тока резко возрастает.
Нормальный ток беспрепятственно проходит через фильтр. В то же время помехи высокой частоты задерживаются в СФ. Сопротивление фильтра находится в прямой пропорциональной зависимости от величины частоты тока. Оба показатели одновременно возрастают, что позволяет задерживать помехи на пути к потребителю.
Обратите внимание! Трёхпроводная сеть питания может подвергаться возникновению помех на участках фаза – ноль, земля – фаза, земля – ноль. Эффективное подавление таких негативных явлений осуществляется нормальным стандартным заземлением СФ.
Пути улучшения схемы фильтра
Существует множество вариантов улучшения схемы сетевого фильтра. Один из них отличается остроумием и позволяет существенно экономить потребляемую электроэнергию. Суть метода заключается в следующем:
- Вскрывают корпус многоразъёмного СФ удлинителя.
- Одну из токоведущих шин разрезают.
- Отрезки соединяют с 5 вольтовым реле, рассчитанным на коммутацию тока 3А, 250 в.
- Два других контакта реле соединяют проводами с USB разъёмом на конце.
- Разъём подключают к USB входу телевизора.
В результате получается управляемая система питания, состоящая из ТВ, цифровой приставки и блока питания спутниковой антенны. Если ранее при выключении телевизора все части системы оставались в режиме ожидания, то с модернизированным фильтром они полностью отключаются. Стоит с пульта включить телеприёмник, как все коммутированные приборы тоже приводятся в действие и наоборот.
Дополнительная информация. Различные модернизированные СФ всегда можно найти на радиорынке, но стоят они довольно дорого. Поэтому намного выгоднее сделать усовершенствование устройства своими руками.
В другом случае идут по пути добавления в СФ LC-фильтра, который, помимо гашения помех от сети, понижает взаимно возникающие электрические помехи от подключённых потребителей.
Штатный варистор (470 в) часто не вызывает срабатывание автоматического предохранителя. Его меняют на аналогичное устройство, рассчитанное на напряжение 620 в. Это позволяет подавлять помехи от работающей стиральной машины, пылесоса и другой мощной электротехники.
Домашние мастера оснащают сетевые фильтры-удлинители звуковой сигнализацией. При превышении в сети уровня напряжения 280 в фильтр оповещает об этом сигналом.
Сетевой фильтр с 2-х обмоточным дросселем
СФ на основе дросселя с двумя обмотками применяют для чувствительной аудиотехники. Звуковые колонки чутко реагируют на помехи сетевого питания. Если таковые возникают, то динамики искажают звук и испускают посторонний фоновый шум. Радиоаппаратура, подключённая к сети через СФ с 2-х обмоточной катушкой, защищена от таких помех.
Схему собирают на отдельной печатной плате. Потребуются несколько конденсаторов и самодельный дроссель. Его изготавливают следующим образом:
- Кольцо из феррита марки НМ с показателем магнитной проницаемости от 400 до 3000 можно взять из старой электротехники.
- Магнитопровод оборачивают тканью и покрывают лаком.
- Для обмотки применяют провод марки ПЭВ. Его площадь сечения зависит от величины нагрузки. Мощные потребители требуют существенного увеличения этого параметра.
- Намотку ведут двумя проводами в разных направлениях.
- Делают 10, 12 оборотов каждого проводника.
- Конденсаторы устанавливают в начале и конце схемы. Они должны выдерживать напряжение до 400 в.
Обмотки катушки индуктивности включаются в последовательном порядке. Поэтому магнитные поля катушки взаимно поглощаются. При прохождении тока высокой частоты резко возрастает сопротивление дросселя. Ёмкости поглощают и закорачивают помехи.
Печатную плату помещают в отдельный металлический корпус. В крайнем случае схему отгораживают металлическими бортиками. Это делается с целью исключения дополнительных помех от блуждающих электромагнитных полей.
С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.
Видео
Как сделать сетевой фильтр своими руками
Прибор напоминает по своему виду удлинитель с кнопкой выключения, отчасти это так, но кроме колодки с розетками дополнительно расположены и фильтрующие элементы. Они как раз и нужны для защиты от скачков напряжения, фильтрации помех и паразитных гармоник.
В самом простом сетевом фильтре внутри стоит только варистор. Это полупроводниковый прибор, который при превышении определенного напряжения превращается в резистор, уходит в короткое замыкание. Вследствие этого, может сработать автоматический выключатель, установленный у вас дома, или, если импульс короткий, то его энергия рассеется варистором в виде тепла. Этот элемент применяют в сетевых фильтрах и блоках питания для защиты от всплесков высокого напряжения. В зависимости от типа варистора он может погасить импульсы разной величины.
Такой вариант исполнения на варисторе самый дешевый, однако кроме всплесков напряжения, он ни от чего не защищает и не фильтрует. Помехи продолжают сочиться в сеть и мешать окружающей и запитанной аппаратуре.
Для фильтрации высокочастотных гармоник широко применяются L, LC и RLC- фильтры, которые также могут быть установлены в сетевом фильтре.
Кроме таких вариантов встречаются еще и модели, где сетевой шнур проходит через ферритовое кольцо, или делает вокруг него пару витков. По сути — это еще один L (индуктивный) элемент, который нужен для фильтрации высокочастотной составляющей помехи.
Сетевой фильтр своими руками
Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:
V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Таким образом, чем больших размеров варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра, собранного по этой схеме, но в заводском исполнении. Это дешевый прибор, который гасит лишь импульсы высокого напряжения. При этом он может безвозвратно выйти из строя при особо сильном всплеске.
Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить еще один фильтрующий элемент – дроссель.
Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы. Эта деталь представляет собой ферритовый сердечник и медную лакированную проволоку, намотанную вокруг него.
Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.
Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только. Из-за этого в сети и возникает такое большое количество нежелательных помех.
Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать медной лакированной проволокой ПЭВ-2 (можно использовать первичную обмотку с 50 Гц сетевого трансформатора) диметром от 0,5 мм, это зависит от мощности нагрузки, которую вы хотите подключать. Намотать на колечко так, как показано на картинке, предварительно обмотав его несколькими слоями диэлектрика, например: изолентой, лакотканью, каптоновым скотчем.
Используйте провод с качественным, не поврежденным лаковым покрытием. А после намотки для надежности покройте деталь несколькими слоями лака. Петельку на конце нужно разрезать, в идеале – сразу мотать двумя параллельными проводами.
Хорошая схема, которую легко сделать своими руками выглядит следующим образом:
А вот конкретный вариант его реализации «в железе». За основы взята пара фильтров от БП.
Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, они часто там встречаются возле сетевого разъема в прямоугольном корпусе в виде параллелепипеда.
Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут. Только будьте осторожны и не перемкните металлическими опилками слои платы, это может привести к короткому замыканию. А готовое устройство обязательно поместите в токонепроводящий корпус для безопасности.
И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:
Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть, что у многих есть несколько ненужных, неработоспособных приборов, то выходит, что запчасти буквально валяются у нас под ногами. Поэтому изготовление устройства, которое может продлить или даже спасти жизнь дорогостоящей аппаратуре, является очень выгодным занятием. Напоследок рекомендуем просмотреть несколько интересных видео-инструкций по сборке самодельного сетевого фильтра: