Как работает транзистор: принцип и устройство
Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры. Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры. Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.
Устройство транзисторов
Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.
- Б – база, очень тонкий внутренний слой;
- Э – эмиттер, предназначается для переноса заряженных частиц в базу;
- К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.
- n-типа — носителями зарядов являются электроны.
- p-типа — носители зарядов – положительно заряженные «дырки».
Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.
Принцип работы транзистора
Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.
Простое изложение принципа работы биполярного транзистора:
- Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
- Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
- При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.
Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.
Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.
Биполярный транзистор, принцип работы для чайников
Что такое биполярный транзистор – элементарное полупроводниковое устройство, функциональность которого охватывает изменение либо усиление выходного сигнала от заряженных частиц.
Это один из типов транзисторов, состоящий из 3-х слоев, которые обеспечивают 2 «зарядных» или «дырочных» перехода (би — два перехода). Соответственно, данное устройство может быть представлено как два диодных элемента, включенных противоположно друг другу.
В простонародье биполярный транзистор пришел на смену морально и физически устаревшим транзисторам лампового вида, которые эксплуатировались очень длительное время в конструкциях телевизоров прошлого столетия.
Как видно из изображения 1 устройства данного вида имеют 3 выхода, однако, по конструктивному исполнению внешний вид отличается друг от друга. Но в схемах электрических цепей они одинаковы во всех случаях.
В зависимости от проводимости биполярные устройства разделяются на P→N→P и N→P→N устройства, которые отличаются что переносит заряженные частицы — электроны или посредством «дырок».
Устройство биполярного транзистора
Согласно типовых схем, буквой «Б» называется «База» — внутренний слой аппарата, его фундамент, который приводит преобразование или изменение токового сигнала. Стрелка в кругу показывает движение токовых зарядов в «Э».
«Э» — «Эмиттер» — внутренняя основная составляющая транзистора, предназначенный для переноса заряженных элементарных частиц в «Б».
«К» — «Коллектор» — вторая составляющая транзисторного устройства, которая производит сбор тех же зарядов, которые проходят через «Б».
Пласт «Базы» конструктивно выполняют очень тоненьким в связи с рекомбинированием заряженных частиц, которые идут через базовый слой, с составными частицами данного пласта. В то же время пласт «Коллектора» конструируют как можно шире для качественного сбора зарядов.
Принцип работы биполярного транзистора
Принцип работы биполярного транзистора для чайников опишем на образце P→N→P транзисторного аппарата на рисунке 3. Принцип работы биполярного транзистора N→P→N вида сходен переходу в прямом направлении, только в этом случае заряды — электрические частицы движутся от «К» до «Э». Для выполнения данного условия необходимо всего на всего изменить полярность подключенного напряжения.
При отсутствии внешних возмущений, внутри биполярника между его слоями будет существовать разность зарядов. На границах раздела будут установлены единые барьерные мосты, так как в это время доля «дырок» в коллекторе соответствует их численности в эмиттере.
Для точной работы биполярного транзистора переход в коллекторном пласте необходимо сместить в противоположном курсе, в то же время в эмиттере направленность перехода должна быть прямым. В этом случае режим функционирования будет активным.
Для выполнения вышеуказанных условий необходимо применить два питания, один из которых с положительным знаком соединяем с концом эмиттера, «минус» подключаем к базовому слою. Второй источник напряжения соединяем в следующем порядке: «плюс» к базовому концу, «минус» — к концу коллектора. Изобразим подключение на рисунке 4.
Под воздействием напряжения Uэ, Uк через барьеры совершается переход дырок в эмиттере №1-5 и в базовом слое электрически заряженных частиц №7,8. В данном случае величина тока в эмиттере будет зависеть от количества переходов дырок, так как их больше.
Дырки, которые перешли в базовый слой собираются у барьерного перехода. Тем самым у границы с эмиттерным слоем будет собираться массовое количество дырок, в то же время у границы с «К», концентрация их существенно ниже. В связи с этим начнется диффузия дырок к «К» и близи границы произойдет их ускорение поля «Б» и переход в «К».
При перемещении через средний слой базы дырки рекомбинируют, заряженный электрон 6 замещает дырку 5. Такое перемещение будет совершаться с увеличением плюсового заряда при переходе дырок, соответственно движение зарядов в обратном направлении будет создавать ток определенной величины, а база остается электрически нейтральной.
Число дырок, которые перешли в коллектор будет меньше числа, которые покинули эмиттер. Это значит, что электрический ток «К» будет отличаться от значения тока «Э».
Обратный переход дырок из коллектора нежелателен и снижает эффективность транзистора, потому что переход осуществляется не основными, а вспомогательными носителями энергии и зависит данный переход сугубо от величины температуры. Данный ток носит название тока тепла. По значению теплового тока судят о качестве биполярного транзистора.
На рисунке 5 схематически изобразим направление движения заряженных частиц — токов транзистора.
На основании выше изложенного напрашивается вывод: любое изменение тока в структуре слоев эмиттер — база сопровождается изменением величины тока коллектора, причем самое малое изменение «базового» тока приведет к значимой коррекции выходного коллекторного тока.
Режим работы биполярных устройств
В зависимости от величины напряжения на выводах транзистора существует 4 режима его функционирования:
- отсечка — переходов дырки — электроды не происходит;
- активный режим — приведен в описании;
- насыщение — ток базы очень велик и ток коллектора будет иметь максимальное значение и абсолютно не зависеть от тока базы, соответственно усиления сигнала не будет;
- инверсия — использование устройства с обратными ролями эмиттера и коллектора.
Достоинства и недостатки биполярных транзисторов
К достоинствам биполярных транзисторов в сравнении с аналогами относятся:
Транзистор. Принцип работы
Транзистор — полупроводниковый электронный прибор, относящийся к категории активных электронных компонентов.
NPN транзистор и PNP транзистор на схемах |
В зависимости от расположения полупроводниковых слоев, транзисторы подразделяют на два основных типа — NPN-транзисторы и PNP-транзисторы.
Электроды обычного биполярного транзистора называются базой, эмиттером и коллектором. Коллектор и эмиттер составляют основную цепь электрического тока в транзисторе, а база предназначается для управления величиной тока в этой цепи.
На условном обозначении транзистора стрелка эмиттерного вывода показывает направление тока.
Как работает транзистор
Базовая цепь транзистора управляет током, протекающим в цепи коллектор-эмиттер. Изменяя в небольших пределах малое напряжение, поданное на базу, можно в достаточно широких пределах изменять ток в цепи коллектор-эмиттер.
Принцип работы биполярного транзистора со структурой NPN. Ток, поданный на базу, открывает транзистор и обеспечивает протекание тока в цепи коллектор-эмиттер. С помощью малого тока, поданного на базу, можно управлять током большой мощности, идущим от коллектора к эмиттеру. |
Транзисторы различной мощности |