Как работает кривошипно шатунный механизм

Как работает кривошипно шатунный механизм

Что такое кривошипно-шатунный механизм и как он работает

Что такое кривошипно-шатунный механизм? Он превращает прямолинейное перемещение во вращательное движение, и наоборот. Основные части кривошип, шатун, ползун и стойка присутствуют во всех видах и типах этих механизмов.

Некоторые люди затрудняются сразу запомнить части устройства. Начинать надо с шатуна. Он шатается. Кривошип вращается. Ползун ползает туда-сюда. Стойка – ось вокруг которой вращается кривошип. Ползун образует со стойкой возвратно-поступательную кинематическую пару.

Ведущими частями могут быть как кривошип, так и ползун. Если электродвигатель вращает кривошип, то ползун — ведомая часть, что-то толкает, или тянет туда-сюда. И наоборот, если ползун какая-то сила толкает взад-вперед, то кривошип является ведомым.

Основные части КШМ

Разберем КШМ у которого ведущим является ползун. Здесь прямолинейное циклическое(вперед-назад) перемещение поршня трансформируется во вращение коленчатого вала. Наиболее распространенный механизм данного типа – двигатель, работающий на бензине или солярке. Проще говоря мотор автомобиля, теплохода, генератора, мотоцикла.

Составные части КШМ разделяются на движущиеся и не движущиеся.

Движущиеся детали КШМ

Поршень с пальцами крепления к шатуну, шатун, коленвал(кривошип) с подшипниками, маховик.

Поршень(ползун) движется под напором газов, горящей смеси бензина и воздуха в карбюраторных двигателях или воспламенении солярки в дизельных. Это движение через поршневой палец и шатун переходит на коленвал. Делают его из алюминиевого сплава. Поршни дизельного двигателя конструктивно отличаются от поршней карбюраторного. В основном различается форма днища.

Поршневые кольца уменьшают зазор между цилиндром и поршнем. Кольца эти свободно находятся в пазах поршня. Их толщина меньше ширины паза. Они сделаны из чугуна и разрезаны в одном месте. Упругие, их диаметр чуть больше диаметра поршня. Под действием пружинящей силы, кольца, находясь в пазах поршня, прижимаются к цилиндру, тем самым уменьшая зазор пары.

Маслосъемные поршневые кольца убирают излишки машинного масла с поверхности цилиндра. Поэтому оно не проникает в камеру воспламенения.

Поршневой палец совмещает поршень и шатун. С небольшим технологическим зазором он проходит в отверстие шатуна и в бобышки поршня. В бобышках палец фиксируется специальными стопорными колечками, которые вставляют в технологические бороздки.

Шатун промежуточное звено между поршнем и коленвалом. Один его конец движется туда-сюда прямолинейно, а другой вращается. В целом шатун движется по сложной траектории, с большими переменными ускорениями. Поэтому на него попадает большая знакопеременная нагрузка. Эту ответственную деталь КШМ делают из легированной стали.

Коленчатый вал (кривошип) делают из стали или чугуна. Он цикличное (туда-сюда) прямолинейное движение поршня трансформирует во вращение вала. Преобразует энергию горящего топлива в цилиндре во вращающее усилие на валу коробки передач автомобиля. Далее через ряд элементов трансмиссии механическая энергия передается на ведущие колеса машины.

Поверхности шеек обработаны высокочастотными токами и отшлифованы. Их количество и расположение соответствуют количеству и расположению цилиндров. Правая часть вала изготовлена в виде фланца к которому крепится маховик. На левую часть ставится ременной шкив и звездочка распределительного вала.

Маховик чугунный диск большой массы. Благодаря этому двигатель пускается и работает равномерно, без рывков. Маховик присоединяется к коленвалу асимметрично расположенными болтами. Этим достигается балансировка системы: коленчатый вал – маховик. На обод маховика устанавливается зубчатое колесо для зацепления с бендиксом стартера.

Газораспределительный механизм

Распределительный вал должен быть синхронизирован с коленчатым валом. Чтобы совпадали фазы сгорания топлива и движение клапанов. Для этого эти валы соединены между собой зубчатым ремнем. Такой ремень не проскальзывает, поэтому сохраняет жесткую связь с маховиком, а значит и с коленчатым валом. Тем самым сохраняется синхронизация двух валов: коленчатого и распределительного, что является основой нормальной функционирования мотора.

Не движущиеся части КШМ

Не движущиеся части КШМ: блок цилиндров, головка блока цилиндров и прокладки между блоками.

Блок цилиндров — базовая деталь КШМ поршневого ДВС. В нем находятся посадочные отверстия для установки коленчатого вала. Он является остовом двигателя, в котором различными способами монтируются остальные его агрегаты и узлы.

Блок цилиндров подвергается большим температурным нагрузкам до 2000 °С. Различные места блока нагреваются по-разному. В результате по-разному деформируются. Что приводит к большим температурным усилиям, которые вкупе с большим давлением (до 11 МПа) создают большие разрывающие усилия. Поэтому изготавливают блоки цилиндров из высокопрочного чугуна и из алюминиевых сплавов.

Наиболее используемым металлом для производства блока цилиндров является чугун, так как он обладает оптимальным соотношением цена-качество. Высокая прочность и низкая стоимость.

Алюминий обладает большим коэффициентом теплового расширения, что создает проблемы. Кроме того, относительно низкие механические качества тоже ограничивают применение его в производстве блока цилиндров.

Внутри блока имеются каналы для подвода масла к трущимся частям. Также делают каналы для жидкости, которая охлаждает блок.

Головка цилиндров является не менее важной деталью. Она также трудится в условиях большого жара — до 2500 ° С. Причем нагрев различных частей неравномерный. С одной стороны, деталь омывается охлаждающей жидкостью, с другой нагревается, что вызывает большие деформации.

Главное требование к головке цилиндров — прочность, достаточная для сопротивления разрывающим силам, противостоящая деформации от механических воздействий и изгибающих температурных напряжений.

Головки цилиндров делают из высокопрочного чугуна, а также из алюминиевого сплава. Выбор металла зависит от типа мотора. Карбюраторные нуждаются в быстром отводе тепла, так как в них сжимается горючая смесь. Поэтому для них головки цилиндров производят их алюминиевого сплава. Дизеля сжимают воздух. Для них головки цилиндров делают из чугуна.

Кривошипно-шатунный механизм (КШМ)

Кривошипно-шатунный механизм

Кривошипно-шатунным называется механизм, осуществляющий рабочий процесс двигателя.

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала.

Кривошипно-шатунный механизм определяет тип двигателя по расположению цилиндров.

В двигателях автомобилей применяются различные кривошипно-шатунные механизмы (рисунок 1): однорядные кривошипно-шатунные механизмы с вертикальным перемещением поршней и с перемещением поршней под углом применяются в рядных двигателях; двухрядные кривошипно-шатунные механизмы с перемещением поршней под углом применяются в V-образных двигателях; одно- и двухрядные кривошипно-шатунные механизмы с горизонтальным перемещением поршней находят применение в тех случаях, когда ограничены габаритные размеры двигателя по высоте.

Классификация кривошипно-шатунных механизмов

Рисунок 1 – Типы кривошипно-шатунных механизмов, классифицированных по различным признакам.

Конструкция кривошипно-шатунного механизма.

В кривошипно-шатунный механизм входят блок цилиндров с картером и головкой цилиндров, шатунно-поршневая группа и коленчатый вал с маховиком.

Блок цилиндров 11 (рисунок 2) с картером 10 и головка 8 цилиндров являются неподвижными частями кривошипно-шатунного механизма.

К подвижным частям механизма относятся коленчатый вал 34 с маховиком 43 и детали шатунно-поршневой группы – поршни 24, поршневые кольца 18 и 19, поршневые пальцы 26 и шатуны 27.

Кривошипно-шатунный механизм двигателей

Рисунок 2 – Кривошипно-шатунный механизм двигателей легковых автомобилей

1, 6 – крышки; 2 – опора; 3, 9 – полости; 4, 5 – прокладки; 7 – горловина; 8, 22, 28, 30 – головки; 10 – картер; 11 – блок цилиндров; 12 – 16, 20 – приливы; 17, 33 – отверстия; 18, 19 – кольца; 21 – канавки; 23 – днище; 24 – поршень; 25 – юбка; 26 – палец; 27 – шатун; 29 – стержень; 31, 42 – болты; 32, 44 – вкладыши; 34 – коленчатый вал; 35, 40 – концы коленчатого вала; 36, 38 – шейки; 37 – щека; 39 – противовес; 41 – шайба; 43 – маховик; 45 – полукольцо

Блок цилиндров вместе с картером является остовом двигателя. На нем и внутри него размещаются механизмы и устройства двигателя. В блоке 11, выполненном заодно с картером 10 из специального низколегированного чугуна, изготовлены цилиндры двигателя. Внутренние поверхности цилиндров отшлифованы и называются зеркалом цилиндров. Внутри блока между стенками цилиндров и его наружными стенками имеется специальная полость 9, называемая рубашкой охлаждения. В ней циркулирует охлаждающая жидкость системы охлаждения двигателя.

Внутри блока также имеются каналы и масляная магистраль смазочной системы, по которой подводится масло к трущимся деталям двигателя. В нижней части блока цилиндров (в картере) находятся опоры 2 для коренных подшипников коленчатого вала, которые имеют съемные крышки 1, прикрепляемые к блоку самоконтрящимися болтами. В передней части блока расположена полость 3 для цепного привода газораспределительного механизма. Эта полость закрывается крышкой, отлитой из алюминиевого сплава. В левой части блока цилиндров находятся отверстия 17 для подшипников вала привода масляного насоса, в которые запрессованы свертные сталеалюминиевые втулки. С правой стороны блока в передней его части имеются фланец для установки насоса охлаждающей жидкости и кронштейн для крепления генератора. На блоке цилиндров имеются специальные приливы для: 12 – крепления кронштейнов подвески двигателя; 13 – маслоотделителя системы вентиляции картера двигателя; 14 – топливного насоса; 15 – масляного фильтра; 16 – распределителя зажигания. Снизу блок цилиндров закрывается масляным поддоном, а к заднему его торцу прикрепляется картер сцепления. Для повышения жесткости нижняя плоскость блока цилиндров несколько опущена относительно оси коленчатого вала.

В отличие от блока, отлитого совместно с цилиндрами, на рисунке 3 представлен блок 4 цилиндров с картером 5, отлитые из алюминиевого сплава отдельно от цилиндров. Цилиндрами являются легкосъемные чугунные гильзы 2, устанавливаемые в гнезда 6 блока с уплотнительными кольцами 1 и закрытые сверху головкой блока с уплотнительной прокладкой.

Блок двигателя со съемными гильзами цилиндров

Рисунок 3 – Блок двигателя со съемными гильзами цилиндров

1 – кольцо; 2 – гильза; 3 – полость; 4 – блок; 5 – картер; 6 – гнездо

Внутренняя поверхность гильз обработана шлифованием. Для уменьшения изнашивания в верхней части гильз установлены вставки из специального чугуна.

Съемные гильзы цилиндров повышают долговечность двигателя, упрощают его сборку, эксплуатацию и ремонт.

Между наружной поверхностью гильз цилиндров и внутренними стенками блока находится полость 3, которая является рубашкой охлаждения двигателя. В ней циркулирует охлаждающая жидкость, омывающая гильзы цилиндров, которые называются мокрыми из-за соприкосновения с жидкостью.

Головка блока цилиндров закрывает цилиндры сверху и служит для размещения в ней камер сгорания, клапанного механизма и каналов для подвода горючей смеси и отвода отработавших газов. Головка 8 блока цилиндров (см. рисунок 2) выполнена общей для всех цилиндров, отлита из алюминиевого сплава и имеет камеры сгорания клиновидной формы. В ней имеются рубашка охлаждения и резьбовые отверстия для свечей зажигания. В головку запрессованы седла и направляющие втулки клапанов, изготовленные из чугуна. Головка крепится к блоку цилиндров болтами. Между головкой и блоком цилиндров установлена металлоасбестовая прокладка 4, обеспечивающая герметичность их соединения. Сверху к головке блока цилиндров шпильками крепится корпус подшипников с распределительным валом, и она закрывается стальной штампованной крышкой 6 с горловиной 7 для заливки масла в двигатель. Для устранения течи масла между крышкой и головкой блока цилиндров установлена уплотняющая прокладка 5. С правой стороны к головке блока цилиндров крепятся шпильками через металлоасбестовую прокладку впускной и выпускной трубопроводы, отлитые соответственно из алюминиевого сплава и чугуна.

Поршень служит для восприятия давления газов при рабочем ходе и осуществления вспомогательных тактов (впуска, сжатия, выпуска). Поршень 24 представляет собой полый цилиндр, отлитый из алюминиевого сплава. Он имеет днище 23, головку 22 и юбку 25. Снизу днище поршня усилено ребрами. В головке поршня выполнены канавки 21 для поршневых колец.

В юбке поршня находятся приливы 20 (бобышки) с отверстиями для поршневого пальца. В бобышках поршня залиты стальные термокомпенсационные пластины, уменьшающие расширение поршня от нагрева и исключающие его заклинивание в цилиндре двигателя. Юбка сделана овальной в поперечном сечении, конусной по высоте и с вырезами в нижней части. Овальность и конусность юбки так же, как и термокомпенсационные пластины, исключают заклинивание поршня, а вырезы – касание поршня с противовесами коленчатого вала. Кроме того, вырезы в юбке уменьшают массу поршня. Для лучшей приработки к цилиндру наружная поверхность юбки поршня покрыта тонким слоем олова. Отверстие в бобышках под поршневой палец смещено относительно диаметральной плоскости поршня. Посредством этого уменьшаются перекашивание и удары при переходе его через верхнюю мертвую точку (ВМТ ).

Поршни двигателей легковых автомобилей могут иметь днища различной конфигурации с целью образования вместе с внутренней поверхностью головки цилиндров камер сгорания необходимой формы. Днища поршней могут быть плоскими, выпуклыми, вогнутыми и с фигурными выемками.

Поршневые кольца уплотняют полость цилиндра, исключают прорыв газов в картер двигателя (компрессионные 19) и попадание масла в камеру сгорания (маслосъемное 18). Кроме того, они отводят теплоту от головки поршня к стенкам цилиндра. Компрессионные и маслосъемные кольца – разрезные. Они изготовлены из специального чугуна. Вследствие упругости кольца плотно прилегают к стенкам цилиндра. При этом между разрезанными концами колец (в замках) сохраняется небольшой зазор (0,2…0,35 мм).

Верхнее компрессионное кольцо, работающее в наиболее тяжелых условиях, имеет бочкообразное сечение для улучшения его приработки. Наружная поверхность его хромирована для повышения износостойкости.

Нижнее компрессионное кольцо имеет сечение скребкового типа (на его наружной поверхности выполнена проточка) и фосфатировано. Кроме основной функции, оно выполняет также дополнительную – маслосбрасывающего кольца.

Маслосъемное кольцо на наружной поверхности имеет проточку и щелевые прорези для отвода во внутреннюю полость поршня масла, снимаемого со стенок цилиндра. На внутренней поверхности оно имеет канавку, в которой устанавливается разжимная витая пружина, обеспечивающая дополнительное прижатие кольца к стенкам цилиндра двигателя.

Поршневой палец служит для шарнирного соединения поршня с верхней головкой шатуна. Палец 26 – трубчатый, стальной. Для повышения твердости и износостойкости его наружная поверхность подвергается цементации и закаливается токами высокой частоты. Палец запрессовывается в верхнюю головку шатуна с натягом, что исключает его осевое перемещение в поршне, в результате которого могут быть повреждены стенки цилиндра. Поршневой палец свободно вращается в бобышках поршня.

Шатун служит для соединения поршня с коленчатым валом и передачи усилий между ними. Шатун 27 – стальной, кованый, состоит из неразъемной верхней головки 28, стержня 29 двутаврового сечения и разъемной нижней головки 30. Нижней головкой шатун соединяется с коленчатым валом. Съемная половина нижней головки является крышкой шатуна и прикреплена к нему двумя болтами 31. В нижнюю головку шатуна вставляют тонкостенные биметаллические, сталеалюминиевые вкладыши 32 шатунного подшипника. В нижней головке шатуна имеется специальное отверстие 33 для смазывания стенок цилиндра.

Коленчатый вал воспринимает усилия от шатунов и передает создаваемый на нем крутящий момент трансмиссии автомобиля. От него также приводятся в действие различные механизмы двигателя (газораспределительный механизм, масляный насос, распределитель зажигания, насос охлаждающей жидкости и др.).

Коленчатый вал 34 – пятиопорный, отлит из специального высокопрочного чугуна. Он состоит из коренных 35 и шатунных 38 шеек, щек 37, противовесов 39, переднего 35 и заднего 40 концов. Коренными шейками коленчатый вал установлен в подшипниках (коренных опорах) картера двигателя, вкладыши 44 которых тонкостенные, биметаллические, сталеалюминиевые.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Шатунные подшипники смазываются по каналам, соединяющим коренные шейки с шатунными. Щеки соединяют коренные и шатунные шейки коленчатого вала, а противовесы разгружают коренные подшипники от центробежных сил неуравновешенных масс.

На переднем конце коленчатого вала крепятся: ведущая звездочка цепного привода газораспределительного механизма; шкив ременной передачи для привода вентилятора, насоса охлаждающей жидкости, генератора; храповик для поворачивания вала вручную пусковой рукояткой. В заднем конце коленчатого вала имеется специальное гнездо для установки подшипника первичного (ведущего) вала коробки передач. К торцу заднего конца вала с помощью специальной шайбы 41 болтами 42 крепится маховик 43.

От осевых перемещений коленчатый вал фиксируется двумя опорными полукольцами 45, которые установлены в блоке цилиндров двигателя по обе стороны заднего коренного подшипника. Причем с передней стороны подшипника ставится сталеалюминиевое кольцо, а с задней – из спеченных материалов (металлокерамическое).

Маховик обеспечивает равномерное вращение коленчатого вала, накапливает энергию при рабочем ходе для вращения вала при подготовительных тактах и выводит детали кривошипно-шатунного механизма из мертвых точек. Энергия, накопленная маховиком, облегчает пуск двигателя и обеспечивает трогание автомобиля с места. Маховик 43 представляет собой массивный диск, отлитый из чугуна. На обод маховика напрессован стальной зубчатый венец, предназначенный для пуска двигателя электрическим стартером. К маховику крепятся детали сцепления. Маховик, будучи деталью кривошипно-шатунного механизма, является также одной из ведущих частей сцепления.

Устройство и принцип работы кривошипно-шатунного механизма двигателя

Кривошипно-шатунный механизм двигателя преобразует возвратно-поступательное движение поршней (от энергии сгорания топливной смеси) во вращательное движение коленчатого вала и наоборот. Это технически сложный механизм, составляющий основу ДВС. В статье подробно рассмотрим устройство и особенности работы КШМ.

Краткая история возникновения

Первые свидетельства о применении кривошипа найдены ещё в III веке нашей эры, в Римской Империи и Византии в VI веке нашей эры. Ярким примером является пилорама из Иераполиса, на которой был применен коленчатый вал. Металлический кривошип был найден в римском городе Августа-Раурика на территории современной Швейцарии. Как бы то ни было, запатентовал изобретение некий Джеймс Пакард в 1780 году, хотя свидетельства его изобретения были найдены еще в древности.

фото 1

Подвижные и неподвижные части КШМ

Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:

  • поршни и поршневые кольца;
  • шатуны;
  • поршневые пальцы;
  • коленчатый вал;
  • маховик.

Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:

  • блок цилиндров;
  • головка блока цилиндров;
  • картер;
  • поддон картера;
  • крепежные детали и подшипники.

Картер и поддон картера двигателя

Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.

Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.

фото 2

Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.

Расположение и число цилиндров

На сегодняшний день существуют следующие наиболее популярные схемы:

  • рядное четырех- или шестицилиндровое положение;
  • V-образное шестицилиндровое положение под углом 90°;
  • VR-образное положение под меньшим углом;
  • оппозитное положение (поршни двигаются навстречу друг другу с разных сторон);
  • W-образное положение с 12 цилиндрами.

В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.

Головка блока цилиндров

К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость – камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.

Цилиндры

В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.

Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.

Кривошипно-шатунный механизм

Основными рабочими компонентами КШМ являются коленчатый вал, поршни с шатунами и маховик.

Поршень

Движение поршня в цилиндре происходит в результате сгорания топливовоздушной смеси. Возникает давление, которое воздействует на днище поршня. В разных типах двигателей оно может отличаться по своей форме. В бензиновых изначально днище было плоским, затем стали применять вогнутые конструкции с проточками под клапаны. В дизельных моторах в камере сгорания сжимается изначально не топливо, а воздух. Поэтому днище поршня имеет также вогнутую форму, которая и образует камеру сгорания.

Форма днища имеет большое значение для формирования правильного факела сгорания топливовоздушной смеси.

Остальная часть поршня называется юбкой. Это своего рода направляющая, которая движется в цилиндре. Нижняя часть поршня или юбки сделана так, чтобы она не соприкасалась с шатуном во время его движения.

фото 3

На боковой поверхности поршней выполнены канавки или проточки под поршневые кольца. Сверху располагаются два или три компрессионных кольца. Они необходимы для создания компрессии, то есть препятствуют проникновению газов между стенками цилиндра и поршнем. Кольца прижимаются к зеркалу, уменьшая зазор. Снизу расположен паз под маслосъёмное кольцо. Оно необходимо для снятия излишков масла со стенок цилиндра, чтобы то не проникало в камеру сгорания.

Читайте также  Как закалить металл для ножа

Поршневые кольца, особенно компрессионные, работают при постоянных нагрузках и высокой температуре. Для их изготовления применяется высокопрочные материалы типа легированного чугуна, который покрывают пористым хромом.

Поршневой палец и шатун

Шатун крепится к поршню при помощи поршневого пальца. Он представляет собой цельную или полую деталь цилиндрической формы. Палец устанавливается в отверстие в поршне и в верхней головке шатуна.

Существуют два типа крепления пальца:

  • с фиксированной посадкой;
  • с плавающей посадкой.

Наиболее распространен так называемый «плавающий палец». Для его фиксации используются стопорные кольца. Фиксированный палец устанавливается с натягом. Как правило, используется тепловая посадка.

фото 4

Шатун, в свою очередь, соединяет коленчатый вал и поршень и создает вращательные движения. При этом возвратно-поступательные движения шатуна описывают восьмерку. Он состоит из нескольких элементов:

  • стержня или основы;
  • поршневой головки (верхней);
  • кривошипной головки (нижней).

Для уменьшения трения и смазки соприкасающихся деталей в поршневой головке запрессовывается бронзовая втулка. Кривошипная головка выполнена разборной, чтобы обеспечить возможность сборки механизма. Детали точно подогнаны друг к другу и крепятся с помощью болтов и контргаек. Чтобы уменьшить трение, устанавливаются шатунные подшипники скольжения. Они выполнены в форме двух стальных вкладышей с замками. По масляным канавкам осуществляется подвод масла. Подшипники с высокой точностью подогнаны под размер соединения.

Вопреки расхожему мнению, вкладыши удерживаются от проворота не за счет замков, а из-за возникающей силы трения между их внешней поверхностью и головкой шатуна. Поэтому при установке внешнюю часть подшипника скольжения нельзя смазывать маслом.

Коленчатый вал

Коленчатый вал является сложной по устройству и изготовлению деталью. Он принимает на себя крутящий момент, давление и другие нагрузки, поэтому выполнен из высокопрочной стали или чугуна. Коленвал передает вращение от поршней на трансмиссию и другие элементы автомобиля (например, приводной шкив).

фото 5

Коленчатый вал состоит из нескольких основных элементов:

  • коренные шейки;
  • шатунные шейки;
  • противовесы;
  • щеки;
  • хвостовик;
  • фланец маховика.

Конструкция коленвала во многом будет зависеть от количества цилиндров в двигателе. В простом рядном четырехцилиндровом двигателе на коленчатом валу имеются четыре шатунных шейки, на которых устанавливаются шатуны с поршнями. Пять коренных шеек расположены по центральной оси вала. Они устанавливаются в опоры блока цилиндров или картера на подшипники скольжения (вкладыши). Сверху коренные шейки закрываются крышками на болтах. Соединение образует П-образную форму.

Специально обработанное место опоры под установку коренной шейки с вкладышем называется постелью.

Коренные и шатунные шейки соединены так называемыми щеками. Противовесы обеспечивают гашение излишних колебаний и обеспечивают равномерное движение коленчатого вала.

фото 6

Шейки коленвала термически обработаны и отполированы, что обеспечивает высокую прочность и точность посадки. Коленчатый вал также имеет очень точную балансировку и центровку для равномерного распределения всех действующих на него сил. В районе центральной коренной шейки, по бокам от опоры, устанавливаются упорные полукольца. Они необходимы для компенсации осевых перемещений.

На хвостовик коленвала крепятся шестерни (звездочки) привода ГРМ, а также приводной шкив навесного оборудования двигателя.

Маховик

На задней части вала имеется фланец, к которому крепится маховик. Это чугунная деталь, представляющая собой массивный диск. Благодаря своей массе маховик создает необходимую инерцию для работы КШМ, а также обеспечивает равномерную передачу крутящего момента на трансмиссию. На ободе маховика выполнен зубчатый венец для соединения с шестерней стартера. Именно маховик раскручивает коленвал и приводит в движение поршни в момент запуска двигателя.

Кривошипно-шатунный механизм, конструкция и форма коленчатого вала долгие годы остаются неизменными. В основном происходят только небольшие конструктивные доработки, направленные на снижение веса, сил инерции и трения.

Разрушители легенд. Двигатель внутреннего сгорания. Часть №6. Кривошипно-шатунный механизм. Часть №1. Шатун.

Вся история существования и развития двигателей внутреннего сгорания(ДВС) непрерывно связана с применением кривошипно-шатунного механизма(КШМ), без которого двигатели в давно и всем известном виде просто непредставимы. Поршень в цилиндре движется прямолинейно-поступательно и преобразовать это движение во вращательное без КШМ не представляется возможным.

Чего наворотили на основе КШМ за последние сто лет можно посмотреть здесь:

При всём кажущемся совершенстве конструкций на основе КШМ попытки создать двигатель без КШМ не прекращаются по сей день. Ничего путнего на горизонте мы пока не наблюдаем, но изобретателей это не останавливает.

Двухсотлетнее стремление избавиться от КШМ давно уже выродилось в самоцель и, похоже, народ давно позабыл(или никогда и не знал?)первопричину этих потуг. Почему же конструкторы всех мастей с маниакальным упорством продолжают опять и опять изобретать велосипед?
Чем так не угодил КШМ создателям ДВС?

Я уже давал ответ на этот вопрос в предыдущих своих статьях, но сегодня хочу остановиться на этом вопросе подробнее. Давайте ещё раз рассмотрим конструкцию КШМ.

Давление газов в цилиндре ДВС равномерно распределено по поверхности «камеры сгорания». Вектор силы этого давления НА ПОРШЕНЬ действует вдоль стенок цилиндра в район оси вращения коленвала. Поршень воздействует на кривошип через шатун, который поворачивается при вращении коленвала на довольно значительный угол — соответственно шатун передаёт на кривошип хоть и бОльшую, но только ЧАСТЬ давления газов. Кривошип в свою очередь преобразует в крутящий момент только ту ЧАСТЬ передаваемого шатуном усилия, которая направлена по КАСАТЕЛЬНОЙ относительно коленвала — таким образом теряя ещё значительную часть передаваемого усилия. Все силы, которые не преобразуются в крутящий момент на коленвалу — деформируют коленвал, шатун, стенки цилиндров, поршень, подшипники и всё прочее типа блока цилиндров — в итоге взаимокомпенсируются через механизмы двигателя и потому полезной работы не совершают. Пропадают зря.

Давайте проследим путь СИЛЫ давления газов на поршень до выходного вала ДВС.
Как видно из рисунка — в каждом КШМ имеется ДВА узла, манипулирующих силами давления газов:

Первый такой узел — это сочленение ПОРШЕНЬ-ШАТУН.
Максимальный коэффициент трансформации силы(далее КТС) давления газов через шатун возникает когда шатун расположен по оси силы давления — соответственно этот момент возникает только в ВМТ и НМТ. По мере отклонения шатуна от вертикали передаваемая на кривошип сила уменьшается по закону Pt=P1*cos(β) от 100% до некоего минимума, возникающего при повороте кривошипа на 90 градусов после ВМТ.
«Наука» теплотехника несколько извращённо трактует взаимодействие сил в этом сочленении.
Третий закон Ньютона пока ещё никто не отменял, но некоторые уже давно и успешно его забыли — сила действия ВСЕГДА равна силе противодействия. Именно поэтому НА САМОМ ДЕЛЕ боковая составляющая вызвана силой ПРОТИВОДАВЛЕНИЯ, действующей в ответ на силу ДАВЛЕНИЯ газов. Поскольку эти силы взаимодействуют под углом — то и «возникает» третья сила, в полном соответствии с законами сложения и разложения сил. В старых учебниках по ДВС ещё можно найти адекватные иллюстрации:

Чем сильнее отклоняется шатун — тем БОЛЬШЕ получается сила(N) давления поршня на стенки цилиндра.
Чем сильнее отклоняется шатун — тем МЕНЬШЕ получается сила(Pt), передаваемая через шатун на кривошип!

Максимальный угол отклонения шатуна напрямую зависит от соотношения ДЛИНЫ ШАТУНА к РАДИУСУ КРИВОШИПА. Чем длиннее шатун — тем меньше возникающий угол. Лучше всего когда шатун длиннее плеча кривошипа в 4 раза и более — максимальный угол отклонения шатуна тогда минимален.

Алхимики от двигателестроения шифруются и потому у них своя система координат — они манипулируют соотношением длины шатуна и рабочего хода поршня — это соотношение у них принято обзывать «R/S». Как часто бывает(или это специально делается?) — общепринятый термин в очередной раз всё путает. Рабочий ход поршня к углу отклонения шатуна никакого отношения, конечно же, не имеет. Но поскольку в силу конструктивных особенностей КШМ рабочий ход поршня ровно в два раза больше радиуса кривошипа — то и такое соотношение можно использовать.
Только зачем?
Я терпеть не могу, когда термин перевирает техническую суть.
Потому я не буду использовать термин R/S в своём рассказе.

При коротком(3R) шатуне угол отклонения шатуна от вертикали достигает 20 градусов и, соответственно, передаваемое на кривошип усилие в сочленении ПОРШЕНЬ-ШАТУН уменьшается процентов на 6-7. Энергия не берётся из ниоткуда и не исчезает в никуда — всё, что недополучит от поршня кривошип, всё это усилие будет впечатывать поршень в стенки цилиндра, что многократно увеличивает трение в цилиндро-поршневой группе(что тоже чревато увеличением потерь мощности) и существенно ускоряет износ.
Т.е. часть сил давления газов замыкается в двигателе накоротко уже на этом этапе.

Чем короче шатун — тем сильнее он отклоняется от вертикали при вращении кривошипа и тем больше «ГЕОМЕТРИЧЕСКИЕ» потери сил в сочленении ПОРШЕНЬ-ШАТУН:

Потому, как ни странно прозвучит — но именно длина шатуна обуславливает МАКСИМАЛЬНУЮ эффективность КШМ в целом! Подавляющее большинство двигателей имеет шатуны длиной 3-3.5R — соответственно за счёт сочленения ПОРШЕНЬ-ШАТУН двигатель с такой геометрией никак не может передать на кривошип больше условных 95% сил, воздействующих на поршень.

Даже 5% потерь уже готового к употреблению момента — это очень дофига. Это просто неприлично много. В потугах хоть как-то отыграть эти потери применяют смещение оси движения поршня(«дезаксиал»»дезаксаж») — либо сдвигают точку крепления шатуна к поршню, либо сдвигают сами цилиндры в блоке так, чтобы шатун в зоне максимального давления газов был перпендикулярен(ну или хотя бы БОЛЕЕ перпендикулярен) днищу поршня и направлен строго вдоль вектора силы передаваемого через шатун давления:

Как видите — смещение уменьшает угол между шатуном и вектором силы давления газов в самом ответственном положении коленвала. За счёт этого средний момент, предаваемый шатуном на кривошип получается увеличить на 1-2 процента.
Это как бы немного, но не будем забывать, что это чуть ли не ПОЛОВИНА ПОТЕРЬ в сочленении ПОРШЕНЬ-ШАТУН. Соответственно при смещении оси движения поршня значительно снижается давление поршня на стенки цилиндра, уменьшается скорость поршня на рабочем такте, это в свою очередь приводит к уменьшению потерь на трение в цилиндре и к уменьшению износа ЦПГ. Уменьшается шум и нагрузки при перекладке поршня…
Но это всё ПРОИЗВОДНЫЕ от потерь в сочленении ПОРШЕНЬ-ШАТУН при отклонении шатуна от оси движения поршня. Я не буду влезать в дезаксиал глубоко — к сожалению он не решает всех проблем, а некоторые проблемы существенно усугубляет, увы.

Есть ещё одна проблема, которую вообще практически не озвучивают — это ДИНАМИЧЕСКИЕ потери. Дело в том, что шатун при работе двигателя движется по довольно замысловатой траектории. Длинный шатун(5R) перемещает поршень по очень близкой к синусоиде траектории. Так выглядит график ПЕРЕМЕЩЕНИЯ поршня на одинаковом коленвалу при разных шатунах(синяя кривая — при относительно длинном(5R) шатуне, красная при относительно коротком(3R) шатуне):

Как видите — отличия в кинематике поршня минимальны и непонятно о чём беспокоиться.
Но давайте посмотрим на график отклонения шатуна от оси движения поршня:

Как видите — максимальный угол отклонения шатуна отличается почти в два раза.
При длинном шатуне мы максимально теряем около 2% передаваемого момента(КТС=0.98), а при коротком — почти 6%(КТС=0.94). Т.е. ГЕОМЕТРИЧЕСКИЕ потери передаваемого момента в сочленении поршень-шатун из-за более сильного отклонения короткого шатуна выше в ТРИ РАЗА!

На самом деле можно взять шатуны и ещё длиннее длинного(тогда потери уменьшаются всё медленнее) и ещё короче короткого(тогда потери нарастают лавинообразно) — но в реальном двигателестроении даже рассмотренные крайности применяются редко, а лезть в галимую теорию я смысла не вижу — меня интересуют чисто практические вещи.

Понятно, что на кону всего-то-навсего 4% от крутящего момента двигателя, но это очень не мало и это всё ещё СТАТИКА, о которой я писал выше.

Давайте смотреть ДИНАМИКУ.
График СКОРОСТИ поршней и шатунов уже начинает вызывать тревогу:

Дело в том, что скорость поршней в цилиндрах сильно влияет на сопротивление и износ.
А оба этих параметра — обратная сторона потерь энергии на трение.

Как видно на графике — скорость движения поршневой группы минимальна вблизи верхней мёртвой точки и вблизи нижней мёртвой точки, а максимальна — посередине хода поршня. Т.е. поршневая группа при каждом обороте коленчатого вала два раза разгоняется максимально и два раза тормозится до нулевой скорости.
Понятно, что каждый разгон и торможение требуют затрат энергии.
При возрастании скорости в два раза — ускорения(а значит и затраты энергии на разгон-торможение) возрастают в четыре раза. А как мы видим на графике — максимальная скорость поршневой группы при коротком шатуне на 3% выше.

Давайте посмотрим на ускорения поршневой при разных шатунах:

Ускорение в ВМТ отличается на 11% и затраты энергии на возвратно-поступательно движение поршневой группы увеличатся пропорционально!

Вблизи НМТ картина ещё более интересная — там ускорение поршневой группы с коротким шатуном имеет сложный характер. На первый взгляд максимальное ускорение ниже, но дело в том, что там выше скорость изменения ускорения — РЫВОК. А рывок — это ещё более энергозатратная(и разрушительная!) штука, чем ускорение.
Кому интересны подробности — читайте например тут.

Вот кривая РЫВКА этих же поршней и шатунов:

Как видно из графика максимальные скорости изменения ускорения при идеально РАВНОМЕРНОМ вращении коленвала находятся в районе 60 градусов ДО ВМТ и в районе 60 градусов ПОСЛЕ ВМТ. При коротком шатуне есть два явно выраженных всплеска в районе 25 градусов ДО НМТ(разгонный рывок) и в районе 25 градусов ПОСЛЕ НМТ(рывок торможения).
В четырёхцилиндровом РЯДНОМ двигателе рывки всех 4 цилиндров накладываются друг на друга — ведь они происходят одновременно в двух цилиндрах — при движении поршня вверх, и одновременно в двух других цилиндрах — при движении поршня вниз. Ещё и воспламенение в одном из цилиндров в районе ВМТ накладывается синфазно каждый такт…
Именно поэтому вибрации четырёхцилиндрового двигателя максимальны по амплитуде и потому именно он считается самым неуравновешенным.

Дезаксиал серьёзно ухудшает эту картину.
Но без него современный КОРОТКОШАТУННЫЙ двигатель немыслим.
В итоге вибрации двигателей получаются настолько высокими, что производителям пришлось изобретать и внедрять балансирные валы:

Эти неуравновешенные валы вращаются с вдвое более высокими оборотами, чем коленчатый вал — таким образом они тоже создают вибрации, но эти вибрации рассчитывают так, чтобы они действовали в противофазе к вибрациям коряво спроектированного КШМ и таким образом гасили их. Вот так производители «успешно» борются с проблемами, которые сами же и породили.
Правая рука не ведает, что вытворяет левая?
В результате внешних проявлений почти нет — трясётся короткошатунный двигатель не сильнее нормального длинношатунного, но внутри такого двигателя бушуют страсти — повышенные ударные нагрузки на коленвал и поршневую, значительные дополнительные вес и инерционные нагрузки, высокие ударные нагрузки на кучу дополнительных узлов — всё это приводит к ускоренному износу и повышенному расходу топлива…

Маниакальная страсть производителей ширпотребовских двигателей снять максимальную мощность с объёма завела индустрию в патовую ситуацию.
Мощность — это обороты.
Производители в погоне за оборотами(читай — за литровой мощностью) пошли по самому лёгкому пути — максимально снизили вес и РАЗМЕРЫ цилиндро-поршневой группы. Ну и получили что получили.
Паспортной МАКСИМАЛЬНОЙ мощности до сих пор приносят в жертву и момент, и экономичность, и ресурс.

При увеличении оборотов в 10 раз — скорости поршневой группы увеличиваются в 10 раз, ускорения увеличиваются в 100 раз, а рывок — в 1000 раз. Соответственно лавинообразно увеличиваются ДИНАМИЧЕСКИЕ потери момента, которые просто обязаны пагубно отражаться на итоговом КПД двигателя в реальной работе. Особенно на высоких оборотах. Но считать их я не буду — это уже высшая математика, а мне бы с арифметикой двигателя разобраться для начала…

На картинках даже в современных учебниках по ДВС нарисованы двигатели в тех пропорциях, какими их представляли себе инженеры начала прошлого века — они-то понимали толк в том, что делали. Но в жизни мы подобные пропорции найдём разве что в судовых и локомотивных двигателях.
Ну и разумеется — в двигателях Формулы-1, которым приходится крутиться с оборотами под 22000, из-за чего в них все эти современные извращения просто недопустимы…
Легковое же двигателестроение уже давно заблудилось в трёх соснах — современные двигатели ВСЕ короткошатунные и короткоходые — и бензинки и дизеля.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector