Как проверить тиристор тестером

Как проверить тиристор тестером

Как проверить тиристор

Большинство тиристоров можно проверить с помощью лампочки и постоянного напряжения, способного ее засветить.

Плюс подаем на анод, а лампочку (минус) соединяем с катодом тиристора (см. рисунок). Кратковременно соединив анод и управляющий вывод, открываем тиристор. Даже поссле рассоединения лампочка должна светиться.

Для проверки тиристора в большинстве случаев достаточно энергии полуторавольтового питания мини-тестера в режиме «xl кОм». При кратковременном касании управляющего вывода подключенным к аноду щупом (см. рисунок) стрелка должна отклониться. Возврат стрелки (после снятия щупа с управляющего вывода) свидетельствует о потере тиристором способности удерживать открытое состояние. Если тестирование не удалось, поменяйте щупы местами (у некоторых приборов переключение в режим «xl кОм» меняет полярность).

Эта схема предназначена также для проверки тиристоров КУ101, КУ202 и других. Работает она следующим образом, если между анодом и катодом тиристора приложено напряжение, то для его открывания на управляющий электрод необходимо подать положительное напряжение. Таким образом в цепочке «управляющий электрод — катод» течет ток и тиристор откроется. Если ток, протекающий через тиристор, меньше тока удержания данного экземпляра тиристора, то при снятии напряжения с управляющего электрода тиристор закрывается. Если же ток превышает ток удержания, тиристор остается открытым. Проверяемый тиристор VS1 подключается в соответствии с рисунком.

Тиристор будем считать полностью рабочи, если после го подключения светодиод не светит, а при нажатии на кнопку загорается. При отпускании кнопки светодиод может гореть, а может и нет. Если светодиод загорается до момента нажатия на кнопку или не светится после ее нажатия, то тиристор неисправен .

Уважаемые радиолюбители на ваш суд предлагаю еще один вариант схемы для проверки исправности тиристора Если при включении питания горит светодиод, то нажимаем кнопу, а затем отпускаем. Если светодиод гаснет, то тиристор выключился. Если же тиристор не выключился, то он неисправен. Нажимаем кнопку еще раз, тиристор открывается. Горение светодиода в этом случае свидетельствует об исправности тиристора.

Резистор R4 должен быть присоединен непосредственно к контактам X1, чтобы исключить влияние наводок на провода

R1ограничивает ток запуска

R2 служит для разряда С1 сопротивлением 3-10 кОм

Как проверить тиристор мы уже знаем, а вот что нам делать если возникла необходимость в проверке симистора. Да все очень просто немного модернизируем уже известный нам пробник. В результате получилась вот такая универсальное устройство для проверки не только симисторов, но и тиристоров.

Готовую схему расположил в корпусе от ненужного сетевого адаптера на 12 вольт, а для добавления универсальности к пробнику для проверки тиристоров, можно сделать выводы трех разноцветных провода с крокодилами.

Для проверки этой разновидности тиристора необходимо собрать небольшую схему, т.к с помощью мультиметра его можно проверить только на очень маловероятный пробой.

Как проверять тиристоры – пошаговая инструкция

Тиристоры как отдельный вид полупроводников, относится к категории диодов. Но в отличие от них, у тиристора есть третий вывод, предназначенный для выполнения задач управляющего электрода.

В фактическом понимании – диод с тремя выводами. Такие полупроводниковые устройства широко применяются и в бытовых приборах, и в регуляторах мощности всевозможных источников света.

Учитывая масштабы использования тиристора, многие домашние мастера сталкиваются с проблемой выхода устройства из строя, но, как и чем его протестировать не знают. Итак, для начала, нужно понять, что это такое и каков его принцип действия.

Что такое тиристор

Тиристор представляет собой одну из разновидностей полупроводниковых приборов, использующих в основе своей работы p-n – переходы. Это электронный ключ, при помощи которого можно регулировать мощную нагрузку с использованием слабых сигналов.

На рынке электротоваров полупроводниковые устройства представлены в достаточно широком ассортименте, классификация которых осуществляется с учетом метода управления и от проводимости:

  • Динистор (диодный радиоэлемент) – оснащен двумя выводами, а переключение в открытое положение происходит за счет импульсов напряжения с конкретной амплитудой;
  • Триодный прибор – не способен пропускать в обратном направлении, он функционирует за счет пульсации тока управления, а процесс выключения происходит или при подаче обратного напряжения, или отключением тока в открытом положении. Учитывая коммутационные параметры, устройства бывают и низкочастотными, и высокочастотными, и быстродействующими, и импульсными;
  • Запираемый тиристор – отключение производится за счет импульсов тока управления (относительно триодного прибора отключается быстрее);
  • Комбинированно-выключаемый радиоэлемент – отключается при подаче импульса тока управления при одновременном приложении обратного анодного напряжения;
  • Симистор-устройство с тремя электродами с пятислойной структурой, которое способно в открытом состоянии пропускать ток, и в прямом направлении, и в обратном;
  • Оптотиристор-радиоэлемент со встроенным светодиодом, за счет которого происходит управление от светового сигнала.

Полупроводниковые приборы данной категории активно используются в составе электронных ключей, выпрямителей, преобразователей, электронном зажигании, регуляторах мощности.

Принцип работы

Тиристоры подразделяются на:

  • устройства, пропускающие ток в прямом направлении – от «анода» к «катоду»;
  • устройства, пропускающие ток в обоих направлениях.

Работа переключающегося радиоэлемента сводится к выполнению функции ключа. На управляющий электрод подается команда, благодаря которой устройство получает соответствующее положение: открытый или закрытый.

Помимо этого, устройства данной категории классифицируют на запираемые и незапираемые.

Функционирование запираемых радиоэлементов было описана выше. Незапираемые полупроводниковые изделия переводятся в закрытый режим не за счет команды на управляющем электроде, а при условии, что проходящий через «анод» и «катод» ток принимает величину меньшую, чем ток удержания.

Чем можно проверить

Протестировать работоспособность полупроводника можно следующими способами:

  • Метод с применением обычной низковольтной лампочки и батарейки. Для этого потребуются: лампочка, три проводка и блок питания с постоянным током. Первым делом выставляется конкретное для загорания лампочки напряжение на блоке питания. Затем к каждому из электродов нужно припаять проводок. Посредством блока питания подается плюс на анод, а минус на катод. После чего, посредством батарейки на 1,5В происходит подача напряжения на управляющий электрод. В качестве индикатора здесь выступает лампочка, если она засветилась, то, переключающийся радиоэлемент функционирует в штатном режиме.
  • Метод с использованием мультиметра, омметра или тестера. Это наиболее привычный и стандартный способ проверки, где анод и управляющий электрод (его контакты) подключаются к измерительному прибору. Здесь в качестве источника тока выступают батареи прибора, а отклонение стрелки (у аналоговых моделей) либо цифровые показания на экране (у цифровых изделий) используются как показатели исправности/неисправности устройства. Если прибор показывает большое сопротивление, значит, устройство закрыто, если же указывает на небольшие величины – открыто.
  • Метод с применением двух стрелочных тестеров – омметров. В этом случае два отрицательных вывода с омметров подключаются к катоду тиристора. Положительный вывод одного из омметров подключается к аноду. Сопротивление на табло этого омметра стремится к бесконечности. Как только, положительный вывод другого омметра кратковременно подключается к управляющему электроду тиристора сопротивление предыдущего омметра сразу уменьшается до нескольких десятков Ом поскольку происходит отпирание тиристора.

Как проверить

Учитывая частый выход радиоэлемента из строя, для своевременного нахождения причины неисправности, желательно иметь удобный комбинированный измерительный прибор либо упрощенной модификации, либо цифрового исполнения.

Описание схемы

Структура тиристора включает в себя, четыре чередующихся слоя p и n типа проводимости p1n1p2n2. Между слоями образуются электронно-дырочные переходы. Слои p1 и n2 и переходы p1n1 и p2n2 получили название эмиттерных, внутренние слои n1 и p2 и переход между ними являются базовыми, а переход между ними – коллекторный.

Подключение к схеме тиристора возможно благодаря трем выводам:

  • «Анод» – отвод от слоя p1. На него подается сигнал положительной полярности;
  • «Катод» – отвод от слоя n2. К нему подключается провод с отрицательной полярностью;
  • «Управляющий электрод» – отвод от слоя n1. На него подается управляющий сигнал, благодаря которому данный радиоэлемент приводится в рабочее состояние. (Исключение составляют динисторы – у них только два вывода и нет управляющего вывода).

Для проверочных работ над устройствами малой и средней мощности необходимо произвести подачу напряжения на выводы «анод» и «катод», а на управляющий электрод пустить кратковременный сигнал для открытия проводимости между «анодом» и «катодом».

Пошаговое руководство

  1. На катодный отвод тиристора подсоединить черный щуп с отрицательным значением.
  2. На анодный конец тиристора прикрепить красный щуп с положительным значением.
  3. К управляющему электроду подключить выключатель, а другой конец выключателя подсоединить к мультиметру в гнездо с красным щупом.
  4. Установить мультиметр в положение измерения сопротивления в пределах не более 2000 Ом.
  5. Включить выключатель кратковременно и через несколько секунд отключить его.
  6. Проверить удерживается ли прохождение тока. Если да, то тиристор исправен. Для отключения его достаточно прекратить подачу напряжения на «катод» или «анод».
  7. Если данная процедура не дала результата, т.е. проводимость не удерживается, то необходимо выключатель переставить на черный щуп вместо красного и снова повторить пункты 4-6.
  8. Если и в этом случае нет удержания прохождения тока, то тиристор не годится к применению.

Как проверить не выпаивая

Для проверки полупроводникового прибора без выпаивания почти из любой схемы вполне может подойти вышеуказанный метод с применением мультиметра, только необходимо отключить управляющий электрод из цепей схемы.

Как проверить динистор, симистор или тиристор мультиметром

Динистор — это важный радиоэлемент в электрических цепях. Предназначен он для схем с автоматической коммутацией устройств, импульсных генераторов, высокочастотных преобразователей сигналов. Из-за невысокой стоимости и простой конструкции такая радиодеталь считается идеальной для использования в регуляторах мощности.

Но как и любой электронный элемент, она может выйти из строя. Поэтому крайне важно уметь правильно проверить динистор мультиметром.

Назначение динистора

Динистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.

Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.

Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.

Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.

В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.

На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.

Принцип работы

Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.

Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.

Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.

Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.

Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Диагностика прибора

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Читайте также  Как сделать лебедку в гараже своими руками
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]