Простой способ выпаивания микросхем в QFP- и QFN-корпусах
В статье приводится простой способ выпаивания микросхем в QFP- и QFN-корпусах с платы, основанный на её нагреве инфракрасным излучением мощной галогеновой автомобильной лампы. Этот способ абсолютно не повреждает ни саму микросхему, ни плату, с которой она снимается.
Введение
Часто требуется извлечь микросхему в корпусе для поверхностного монтажа (SMD) из уже изготовленной платы. Если выпаивание таких микросхем с двусторонним расположением выводов (SOIC, SOP и т.п.) не представляет особой проблемы, то с микросхемами в квадратных корпусах с 4-сторонним расположением выводов, например, QFP (Quad Flat Package) и особенно «безногих», QFN (Quad Flat No-leads package), у которых в качестве выводов используются контактные площадки, расположенные с одной стороны микросхемы, на взгляд автора, могут возникнуть определенные трудности. Дело осложняется еще тем, что в корпусах QFN со стороны контактных площадок имеется «земляная» пластина, расположенная в середине микросхемы и также припаянная к плате. В подавляющем большинстве случаев для выпаивания таких микросхем используется достаточно дорогой (от 2000 руб. и выше) паяльный фен, горячий воздух которого направляется на микросхему, и при разогреве её до температуры расплавления припоя она уже легко снимается с платы. Однако такой способ имеет два недостатка. Во-первых, конечно, относительно высокая стоимость фена, во-вторых (и это главное), нагрев микросхемы до той температуры, которая позволяет расплавить припой, может привести к выходу из строя микросхемы. Особенно это касается микроконтроллеров с «зашитой» программой, которую желательно сохранить. Можно, конечно, направить фен на обратную сторону платы для ее разогрева, однако для получения приемлемой температуры расплавления припоя нагрев обратной стороны платы должен быть настолько интенсивным, что стеклотекстолит начинает уже обугливаться и дымиться, выделяя настолько отвратительный запах, что плату хочется побыстрее выбросить в окно :).
Рисунок 1. | Конструкция устройства. |
В статье приводится альтернативный способ нагревания обратной стороны платы инфракрасным излучением галогеновой лампы для фары автомобиля. При этом обратная сторона платы не только не обугливается, но даже не особенно и нагревается, а припой со стороны микросхемы нагревается настолько интенсивно, что микросхема легко снимается с платы. Стоимость подобной галогеновой лампы на порядок (а то и на два) меньше стоимости фена, а конструкция подобного «нагревателя» очень проста и поэтому достаточно дешева. Ниже будет рассмотрена конструкция устройства, показаны принцип его работы и её результаты.
Конструкция и работа устройства
Основу конструкции составляет стеклотекстолитовая пластина толщиной 4 мм, к которой болтами М5 и гайками прикручены два гардинных уголка размером 120×55×17×3.5 мм (Рисунок 1). Автор использовал галогеновую лампу марки TORSO на 12 В мощностью 100/80 Вт (с двумя спиралями) с цоколем HB5 (Рисунок 2). Цоколь лампы вставляется в ответный разъем («фишка»), который прикручен к стеклотекстолитовой пластине тремя винтами М2.5 впотай и гайками. Для этого на торце разъема были просверлены три соответствующих отверстия, а в пластине для установки разъема прорезано окно, и также просверлены три отверстия (Рисунок 3). Плата, с которой необходимо выпаять микросхему, закрепляется на уголках обычными канцелярскими зажимами. В качестве источника питания (ИП) автор использовал зарядное устройство для автомобильных аккумуляторов с максимальным током 10 А. Подключение лампы к ИП осуществляется двумя 3-контактными разъемами XLR (мама и папа). Обе спирали лампы подключаются параллельно (в связи с простотой схема не приводится). Измеренное напряжение на лампе, когда включены обе спирали, при токе 9 А составило 11.4 В. При этом мощность составила чуть более 100 Вт (что нетрудно подсчитать). Это означает, что лампа работает почти вполнакала (максимальная мощность лампы, когда работают обе спирали, по паспорту составляет 180 Вт). Дальнейшее увеличение мощности не требуется по трем причинам. Во-первых, работа вполнакала существенно продлевает срок службы лампы, во-вторых, в ИП установлен предохранитель на 10 А, и при включении, когда спирали еще холодные, ток может превысить 10 А, и предохранитель может сгореть (что, конечно, нежелательно), и, в-третьих, температура нагрева достаточно высокая, чтобы расплавился припой с обратной стороны платы, и микросхемы легко снимаются, и достаточно низкая, чтобы нагреваемая сторона платы не обугливалась. На самом деле она не только не обугливается, но даже особенно не нагревается. (Может, стеклотекстолит пропускает инфракрасное излучение, а дорожки – задерживают его, отчего поглощают и, естественно, интенсивно нагреваются?). Никакого запаха при таком нагреве, как показала практика, плата не выделяет. При расстоянии между платой и лампой 15 – 17 мм достаточно 3 – 4 минут прогрева, и микросхемы легко снимаются обычным пинцетом.
Рисунок 2. | Примененная лампа. |
Здесь следует заметить, что применение галогеновой лампы автор «подсмотрел» в Интернете [1]. Однако в [1] нагрев производится со стороны микросхемы, что, во-первых, нежелательно (см. выше), а во-вторых, очень неудобно, т.к. весь обзор закрывает сама лампа с «абажуром», «подлезть» под который пинцетом весьма проблематично (сравнить с Рисунком 3).
Рисунок 3. | Устройство в работе. |
Стеклотекстолитовая пластина достаточно жестко зажимается в небольших тисках (Рисунок 3).
Результаты работы
Рисунок 4, на взгляд автора, достаточно красноречиво свидетельствует о результатах работы устройства. Единственный комментарий касается фотографии Рисунок 4в. Как можно убедиться из этой фотографии, обратная сторона платы сохранила свой первозданный вид, и никакого обугливания нет и в помине.
Рисунок 4. | Результаты работы устройства: (а) – исходная плата, (б) – плата со снятыми микросхемами, (в) – обратная сторона платы с выпаянными микросхемами. |
Что касается микросхемы в корпусе QFN-20 (это микроконтроллер C8051F330), то для повторного использования её необходимо промыть в растворителе (ацетоне или спирте) с целью удаления канифоли, покрыть жидким флюсом (например, ЛТИ-120), пройтись паяльником по всем контактным площадкам и еще раз промыть в растворителе. Как показала практика, программа, «зашитая» в микроконтроллере, полностью сохраняется, а её работоспособность полностью подтвердилась.
Заключение
Примененный способ выпаивания микросхем в QFP и особенно в QFN корпусах, на взгляд автора, достаточно прост, дешев, удобен и рекомендуется для использования.
Как выпаять микросхему
Во всех этих случаях, кроме первого, основные условия – сохранение целостности и рабочего состояния выпаиваемой детали и целостность печатной платы.
Для выполнения этих работ требуется соблюдение аккуратности и несложных правил, которые были разработаны еще тогда, когда большая часть номенклатуры радиодеталей была в дефиците. Остро стоял вопрос, как выпаять дорогую микросхему из платы, не повредив ее.
Типы микросхем
Большое разнообразие корпусов микросхем привело к тому, что методика выпаивания стала различаться. Раньше наибольшее распространение имели микросхемы со штыревыми выводами для монтажа в отверстия печатной платы. В дальнейшем, с увеличением степени интеграции, широким распространением автоматизированных линий пайки, стали использоваться элементы для поверхностного монтажа с плоскими или шариковыми выводами.
Для ИМС (интегральных микросхем) с выводами для пайки в отверстия характерны корпуса типа DIP и SIP с двумя и одним рядом выводов, соответственно.
Поверхностный монтаж (SMD) допускает установку ИМС с выводами таких типов:
- Плоские выводы, выведенные наружу корпуса, – SOIC, SOP, QFP (квадратный корпус);
- Плоские ножки, загнутые вовнутрь, под корпус, – SOJ, PLCC, QFJ;
- Шариковые выводы – BGA.
Каждая из разновидностей имеет по несколько подвидов. Общее число типов корпусов исчисляется десятками.
Безопасная работа с полупроводниковыми радиодеталями
Перед тем, как отпаять деталь с платы паяльником, необходимо знать следующее. Полупроводниковые элементы крайне чувствительны к перегреву. Также дорожки на печатной плате при высокой температуре или превышении длительности пайки могут отслоиться от подложки или оборваться, что еще хуже.
Температурные условия
Температура жала паяльника должна составлять 200-250⁰С. При большей температуре могут произойти отслоение печатных дорожек и перегрев микросхемы. Такие же цели ставит время пайки одной ножки – не более 3-х секунд.
Обратите внимание! Некоторые сайты советуют для демонтажа ориентироваться не на температуру, а на мощность паяльника. Это неправильно. Температура у них одинакова, просто менее мощный может не справиться с плавлением припоя у вывода за счет интенсивного теплоотвода, а слишком мощным легко перегреть выводы и плату. Оптимальный вариант – паяльник мощностью 40 Вт.
Многие микросхемы чувствительны к статическому электричеству. Работать необходимо с надетым электростатическим браслетом и с заземленным инструментом.
Конструкция плат
Печатные платы отличаются количеством печатных слоев и способом установки радиодеталей:
- Однослойные;
- Двухслойные;
- Многослойные;
- Для DIP элементов;
- Для SMD компонентов.
На одной плате могут располагаться одновременно DIP и SMD элементы на одной или обеих сторонах. Многослойные печатные платы, кроме внешних слоев, имеют внутренние, которые обычно служат для общей экранировки или разводки цепей питания. Так, материнские платы современных компьютеров или мобильных телефонов имеют до семи слоев.
Методики демонтажа
Способ, как выпаивать микросхемы, зависит, в основном, от типа выводов, хотя есть и универсальные методы.
Демонтаж микросхемы паяльником
Это самый трудоемкий и ненадежный способ. Применяется только тогда, когда количество ножек микросхемы минимальное. Перед тем, как выпаивать микросхемы паяльником, кончик жала тщательно облуживают и очищают от остатков припоя, чтобы он остался только в виде тонкой пленки. Расплавленный припой, который окружает ножку ИМС, под действием силы натяжения переходит на жало. Повторяя процедуру несколько раз, полностью освобождают выводы.
Важно! Перед каждым касанием платы жало очищают от припоя. Время касания не должно быть более трех секунд. Если ножка освобождена не полностью, заняться ею можно только через некоторое время после остывания. В это время можно заниматься следующими выводами.
Демонтаж микросхемы с помощью бритвенного лезвия
При работе с планарными элементами на помощь придет обыкновенное бритвенное лезвие. Для удобства лезвие бритвы разламывают пополам вдоль. Прислонив лезвие вплотную к границе вывода и платы, прогревают привой до его расплавления. Просунув лезвие между ножкой и платой, разделяют их. Лезвие выполнено из нержавеющей стали, поэтому припой к нему не пристает.
Использование демонтажной оплетки
Специальная демонтажная оплетка работает благодаря капиллярному эффекту, втягивая в себя расплавленный материал. Можно с тем же эффектом использовать оплетку экранированного кабеля. Оплетка должна быть чистой, без следов окисления. Для того чтобы улучшить растекание расплава, оплетку смачивают жидким флюсом.
Демонтаж микросхем с помощью оловоотсоса
Оловоотсос представляет собой специальный поршень, который при движении втягивает в себя расплав, освобождая вывод. Данный метод пригоден для работы с DIP и SIP компонентами.
Использование медицинских иголок
Такой способ наилучшим образом показал себя при демонтаже ИМС, особенно для одностороннего печатного материала. Двухсторонний печатный монтаж также может использоваться для демонтажа иглы от шприцов. Выбирая иглу, нужно, чтобы ее внутренний диаметр позволял свободно входить ножке микросхемы, а наружный – проходить в отверстие печатной платы. Кончик иглы стачивают надфилем до получения ровной поверхности.
Иглу надевают на кончик ножки и прогревают вывод паяльником. После расплавления припоя иглу вводят в отверстие платы и плавно поворачивают вокруг оси до застывания олова. После этого снимают иглу с ножки, которая теперь полностью свободна. Материал иглы (нержавеющая сталь) не облуживается, поэтому вращение вокруг ножки необходимо только для того, чтобы легче было вынуть ее из отверстия.
Использование сплава розе
Используя сплав розе, можно выпаять одновременно все выводы ИМС, благодаря тому, что легкоплавкий сплав растекается между выводами и равномерно и одновременно передает всем им тепло от разогретого жала паяльника. После полного прогрева деталь аккуратно извлекают из платы при помощи пинцета.
Минус у данного метода один – после демонтажа остатки сплава розе собрать не получится, поскольку он будет засорен излишками олова и свинца, которые изменят его состав и температуру плавления.
Как выпаять микросхему из платы феном
При работе с SOJ, PLCC, QFJ и BGA корпусами необходима паяльная станция или фен с регулировкой температуры. При помощи станции прогревают целиком участок платы до освобождения микросхемы, а при помощи фена с насадкой поток горячего воздуха направляют на выводы ИМС до их освобождения.
Отпаивать радиоэлементы необходимо при температуре 250⁰С. Соседние элементы для исключения перегрева следует прикрыть алюминиевой фольгой.
Как выпаять конденсаторы из материнской платы
Чтобы выпаять конденсаторы или другие двухвыводные элементы, нет необходимости использовать специальный паяльный инструмент. В процессе демонтажа прогревают один из выводов конденсатора, одновременно наклоняя элемент с целью выхода ножки из отверстия. Далее повторяют то же самое со второй ножкой, наклоняя деталь в обратную сторону. Во избежание отрыва не надо сильно давить на конденсатор. Прогревая поочередно оба вывода, постепенно освобождают их.
Видео
Как выпаять микросхему из платы паяльником?
Всем привет! На связи с вами автор блога popayaem.ru Владимир Васильев. Речь сегодня пойдет о различных способах демонтажа микросхем. Именно с ними возникают трудности при распайке на детали различной техники.
«Зачем оно надо, ведь можно и так купить, ведь стоит копейки!»-воскликнет рядовой обыватель, не понимая, и не придавая значение тому, какое богатство сокрыто в старой электронной технике. Я как-то писал статью о том как разживался радиодетальками когда купить было негде либо не на что.
Обычно при выпаивании различно мелочевки проблем не возникает. Дело это не хитрое, нагрел со стороны монтажа, и вытащил по одному выводы из монтажных отверстий. Куда сложнее дело обстоит с микросхемами, здесь не один вывод, пока один вывод погрел другой уже остыл. Причем отгибать ножки по одной не дело, отвалятся только так.
Для демонтажа микросхем есть несколько приемов:
Демонтаж микросхемы паяльником
Это самый бомжовский и геморный прием, когда ничего кроме паяльника нет но нужно выпаять микросхему.
Для того чтобы прошло это дело более менее гладко очищаем паяльник от налипшего припоя. Можно его очистить об специальную целюлозную губку а можно просто о влажную тряпку. Затем, с помощью кисточки обмазываем все пайки жидким флюсом, я для этого использую спиртоканифоль. Теперь очищенное жало паяльника суем сначала в канифоль а затем тычем в точки пайки выводов микросхемы. В результате медленно, по крупицам, припой начинает переходить с монтажного пятака на жало паяльника. Мы как бы залуживаем жало паяльника но только припой берем с выводов желанной микросхемы.
Так нужно проделать большое количество итераций, не забывая каждый раз очищать жало паяльника, пока микросхема не будет освобождена из монтажного плена. Здесь очень важно не увлечься и не перегреть микросхему. Также от перегрева могут отлететь монтажные пятаки и дорожки, но это важно в том плане если сама микросхема вам нафиг не нужна но нужна сама плата.
Демонтаж микросхемы с помощью бритвенного лезвия
Основная проблема выпайки микросхем состоит, как я уже говорил, в том , что пока греешь один вывод другой уже остыл а чтобы извлечь микросхему нужно чтобы все выводы оставались прогреты одновременно. Это сделать паяльником сложно но можно. Можно конечно взять и варварски изогнуть жало какого-нибудь ЭПСН паяльника и эдаким Г-образным крючком прогревать пайки. А можно пойти проще. Только в этом случае нужно воспользоваться какой-либо металлической пластиной или скобой которая не облуживается.
В качестве такой пластины можно применить бритвенное лезвие. Лезвие нужно для того, чтобы тепло от паяльника концентрировалось не на одном выводе а передавалось сразу нескольким. Единственное, может потребоваться более мощный паяльник так как при низкой мощи тепла которого было достаточно для одного вывода может не хватить на целую прорву выводов.
поэтому прижимаем лезвие к целому рядку ножек микросхемы и начинаем прогревать все пайки одновременно, Прогреваем и одновременно покачиваем микросхему, можно под брюхо микросхемы подсунуть лезвие ножа стараясь приподнять микросхему с одного края. Таким образом освободив от монтажного плена один ряд ножек, тем же макаром, освобождаем второй ряд.
Использование демонтажной оплетки
При демонтаже микросхем голым паяльником используется свойство паяльника притягивать припой. Залуженное и покрытое флюсом жало паяльника обладает хорошей смачиваемостью и вбирает припой очень даже не плохо. Но как повысить эффективность этого процесса?
Можно конечно выбрать паяльник с более широким жалом, тогда им можно будет изъять большее количество припоя. Но можно пойти другим путем, можно воспользоваться оплеткой от коаксиального кабеля. Подойдет антенный провод от телевизора. Сдираем эту оплетку с кабеля и обильно покрываем ее флюсом.
Теперь если прижать такую косичку к пайкам микросхемы и немножко пройтись по ней паяльником можно убедиться чудесных демонтажных свойствах оплетки. Благодаря своей пористости и гигроскопичности она вбирает в себя припой куда лучше любого жала паяльника, освобождая тем самым микросхемные выводы.
Сейчас в продаже имеются специальные демонтажные оплетки, так что можно оставить телевизионный провод в покое.
Демонтаж микросхем с помощью оловоотсоса
Как думаете, что получится если совместить клизму и паяльиик? Получится нечто, изображенное на рисунке. Это оловоотсос и этот конструктив описывался еще в старом журнале не то «Моделист-конструктор» не то «Журнал радио», уже не помню.Сейчас они могут выглядеть совершенно по разному, могут быть такими как на рисунке, могут представлять собой модифицированный шприц. Но суть их от этого не меняется, паяльник разогревает место спая а клизменная груша или шприц вытягивают весь припой. В принципе очень эффективный метод демонтажа.
Использование медицинских иголок
В общем суть в следующем. В аптеке покупаем иголку достаточно тонкую чтобы пролезла в монтажное отверстие и достаточно толстую чтобы можно было одеть на вывод впаянной микросхемы.
Надфилем спиливаем кончик иглы, чтобы получилась простая полая трубочка, будет еще лучше если отверстие немного развальцевать. Получилась хорошая демонтажная игла
А работать с ней очень просто. Одеваем нашу трубочку на вывод микросхемы, паяльником разогреваем место спая. Теперь пока припой еще в жидком виде иголку просовываем в монтажное отверстие и начинаем неистово вращать иглу до момента застывания припоя. Одев иглу на вывод мы тем самым изолировали ножку микросхемы от припоя. Игла имеет особое покрытие которое ухудшает смачиваемость припоем, поэтому припой к игле не липнет.
Сейчас кстати в продаже имеются специальны демонтажные трубочки различных диаметров так что мед. иглы можно уже не покупать.
Использование сплава розе
Для демонтажа микросхем можно использовать сплав розе или сплав вуда. Отличительная особенность состоит в том, что эти сплавы имеют низкую температуру плавления, менее 100 градусов.
Для демонтажа насыпаем несколько гранул в место пая. Теперь наша задача организовать лужицу сплава распределив ее по всем ножкам микросхемы. Благодаря этому низкотемпературный сплав смешался со сплавом припоя в результате общая температура плавления у нас понизилась. Теплопроводность сплава достаточна и лужица сплава покрывает все ножки микросхемы и плавит все и вся. В результате чего микросхема просто извлекается из монтажных отверстий.
Вот, как-то так а на сегодня у меня все.
Думаю что статья окажется полезной особенно для новичков и сохранит несколько нервных клеток при демонтаже очередной микросхемы.
Чтож, друзья, не забывайте подписываться на обновления блога, а я желаю вам солнечного весеннего настроения, удачи и успехов!