Фильтры для цветомузыки схемы

Фильтры для цветомузыки схемы

И да начнется светомузыка! AN6884. Фильтры, ч.2

Снова здравствуй, %USERNAME%! Всю неделю, начиная с последней записки, я искал причину, по которой не работала фильтрация каналов. Ровно только что я нашел причину и расскажу тебе, как же сделать полосовой фильтр- основу будущего спектроанализатора!

Цикл записок «И да начнется светомузыка!»:

В прошлой записке я описал использование одного из операционных усилителей в используемой микросхеме NJM4558 в качестве предусилителя для 10- светодиодного индикатора уровня звука на AN6884. Теперь, что логично, будет использоваться первый ОУ, но уже с обвесом для полосового фильтра.

Итак. Что такое полосовой фильтр. Согласно википедии- это «фильтр, который пропускает частоты, находящиеся в некоторой полосе частот». Все справедливо: нужно пропускать бас, настраиваем его на полосу 80-120гц. Нужны высокие- смотрим в сторону 10-15-20 КГц.

Цифры- это хорошо, а как считать это чудо? А очень просто. Для расчета вообще всех типов фильтров( коих не меньше 5) используется Filter Wiz Pro— софтина с нереально огромным функционалом. Там, следуя встроенной инструкции, я расчитал полосовой фильтр для бас- полосы 90-110гц.

В контексте нашей схемы, фильтр будет выглядить так:

Где Ca, Cb, Ra, Rb- значения из Filter Wiz Pro для нужного результата.

Поскольку Pro версия тулзы платная, выкладываю расчитанные значения для 5 полос спектроанализатора( больше просто не влезет в кусок омедненного текстолита, что лежит у меня в запасах :))

Центральная частота100 Гц500 Гц1 кГц5 кГц10 кГц
Ширина полосы10 Гц50 Гц100 Гц500 Гц1 кГц
Ra390 Ом91 Ом240 Ом51 Ом24 Ом
Rb100 кОм100 кОм100 кОм91 кОм91 кОм
Ca330 нФ33 нФ33 нФ4,7 нФ330 нФ
Cb330 нФ330 нФ33 нФ47 нФ330 нФ

Рекомендую после установки фильтра методом подбора найти нужный коэффициент усиления на втором ОУ. Он равен K=1+R23/R22. Себе я поставил R23= 200КОм, R22= 2КОм, в результате чего при мощном басе загораются все 10 светиков.

Выглядит вживую это вот так:

1) Выглядит так себе, но зато прочно и работает :)

2) А сверху уже куда симпатишнее, хоть и фото получилось смазанным

3) Просто понравилось

Видео переснимал несколько раз, так как решил показать, так сказать, в сравнении разницу между пульсацией в зависимости от громкости вообще и в зависимости только от громкости бас- линии.

В этот раз снять и смонтировать получилось плохо, но я думаю будет понятно:

Для сравнения- схема без фильтра:

Вот такие пироги! В следующей записки я расскажу, как проектировал плату под это устройство, какие трудности возникли и как их обойти.

ЦМУ — цветомузыкальные устройства (2 схемы)

Предлагаю две простые схемы ЦМУ. Первая (рис.1) собрана много лет тому назад, повторялась несколькими радиолюбителями и не нуждалась в каком-либо налаживании. Схема собрана всего на шести транзисторах типа КТ315, их, конечно же, можно заменить на другие транзисторы n-p-n проводимости, например КТ301, КТ312, КТ102, КТ503 и др. Транзисторы управляют работой тиристоров, кроме того, являются фильтрами звуковых частот.

Транзисторы VT1 и VT2 — низких частот, VT3, VT4 -средних частот и VT5, VT6 — высоких частот.

Поскольку схема гальванически соединена с сетью, то необходимо соблюдать меры техники безопасности. Чтобы отделить сеть от источника музыкального сигнала, применен разделительный трансформатор. Можно использовать готовый трансформатор фабричного производства, например, выходной от лампового телевизора (выходной НЧ трансформатор). Роль первичной обмотки выполняет вторичная, чтобы получить необходимую чувствительность. Если ЦМУ подключено не к выходу УМЗЧ, а к линейному выходу магнитофона или к другому источнику сигнала с высоким выходным сопротивлением, тогда схему необходимо дополнить усилителем мощности любой конструкции, например, усилителем, изображенном на рис.2. Микросхема К174УН14 выбрана из-за простоты реализации навесным монтажом.

Но в случае подключения ЦМУ к выходу УМЗЧ или непосредственно к громкоговорителю, усилитель мощности не нужен.

Назначение элементов. R1 — общий уровень входного сигнала, R2, R5, R8 — соответственно регуляторы красного, желтого и зеленого цветов каналов свечения ламп. О транзисторах уже сказано, конденсаторы образуют фильтры среза в каналах ЦМУ, диоды VD1, VD3 и стабилитрон VD2, а также конденсатор С8 необходимы для запитки схемы от сети без силового трансформатора.

Схема ЦМУ довольно проста, но работает хорошо и надежно. Несколько слов о тиристорах. Если тиристоры работают на лампы до 100 Вт, то применять теплоотводы нет никакой необходимости. Если же мощность ламп более 100 Вт, то необходимо установить теплоотводы. Кроме того, тиристоры должны быть высоковольтными, например, КУ201 (К, Л, М), КУ202 (К, Л, М, Н). В порядке алфавита увеличивается их допустимое рабочее напряжение.

В качестве разделительного трансформатора можно использовать также трансформатор от «радиоточки». Обмотка для подключения к громкоговорителю будет первичной обмоткой для ЦМУ, а обмотка, подключенная к регулятору громкости «радиоточки», вторичной в схеме ЦМУ. Можно также использовать и трансформаторы выходных УМЗЧ транзисторных схем устаревших конструкций приемников, поскольку в современных конструкциях трансформаторы на выходе УМЗЧ почти не применяются.

Вместо ламп HL1. HL3 прекрасно работают елочные гирлянды. Резистор Рдоб на входе схемы имеет то же назначение, что и резистор R5 в схеме УМЗЧ на рис.2, т.е. для предотвращения выхода из строя УМЗЧ, к которому подключают трансформаторный вход ЦМУ.

Изготовить такое сопротивление не составляет особого труда. Достаточно приобрести проволочную спираль для электроплиток устаревшего образца и, измерив общее сопротивление спирали обычным омметром, отрезать требуемую часть этой спирали. Паять спираль очень просто: облудить ее припоем с помощью лимонной кислоты, а потом использовать обычную канифоль.

Печатные платы показаны на рис. 3. Монтаж можно выполнить и со стороны деталей. Несколько экземпляров этой схемы были собраны таким способом, но лучший вид будет иметь схема, если детали расположить с одной стороны, а все или почти все соединения — с другой.

Имея симисторы КУ208Г, очень легко собрать другую ЦМУ. Достаточно приобрести всего 18 деталей и разделительный трансформатор. Схема ЦМУ очень проста (рис. 4). Она трехканальная. Сигнал звуковой частоты поступает на вход через повышающий трансформатор Т1. Он же играет роль разделительного элемента между ЦМУ и источником звукового сигнала, одновременно повышая амплитуду (напряжение) входного сигнала до необходимого для срабатывания симисторов уровня.

В схеме применяются простейшие пассивные фильтры: на низких частотах R3, С1; на средних частотах R5, С2 и на высоких частотах R7, С3. Резисторы R2, R4 и R6-регуляторы чувствительности каналов соответствующих им симисторов VS1, VS2, VS3. В оригинале использованы резисторы типа МЛТ 0,5 Вт тех же номиналов, что указаны на схеме. Трансформатор Т1 — выходной от ламповых приемников старого образца. Вполне подходит трансформатор от абонентского громкоговорителя («радиоточки»).

Схема будет работать и с силовым трансформатором, имеющим накальную обмотку, но лучше в этом случае найти обмотку с коэффициентом трансформации не более 10. Самодельный трансформатор содержит: I обмотка 300 витков ПЭЛ 0,2 мм; II обмотка — 2000 витков 0,08 мм, сердечник ШЛ 14×20.

Вид печатной платы со стороны деталей и со стороны печатных проводников показан на рис. 5.

Простые схемы цветомузыки на светодиодах и светодиодных лентах для сборки своими руками

Неисчерпаемый потенциал светодиодов в очередной раз раскрылся в конструировании новых и модернизации уже имеющихся цветомузыкальных приставок. 30 лет назад пиком моды считалась цветомузыка, собранная из разноцветных лампочек на 220 вольт, подключенных к кассетному магнитофону. Сейчас ситуация изменилась и функцию магнитофона теперь выполняет любое мультимедийное устройство, а вместо ламп накаливания устанавливают сверхъяркие светодиоды или светодиодные ленты.

Преимущества светодиодов перед лампочками в цветомузыкальных приставках неоспоримы:

  • широкая цветовая гамма и более насыщенный свет;
  • различные варианты исполнения (дискретные элементы, модули, RGB-ленты, линейки);
  • высокая скорость срабатывания;
  • низкое энергопотребление.

Как сделать цветомузыку с помощью простой электронной схемы и заставить светодиоды мигать от источника звуковой частоты? Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы рассмотрим на конкретных примерах.

Простейшая схема с одним светодиодом

Для начала следует разобраться с простой схемой цветомузыки, собранной на одном биполярном транзисторе, резисторе и светодиоде. Питание на неё можно подавать от источника постоянного тока напряжением от 6 до 12 вольт. Работает данная цветомузыка на одном транзисторе по принципу усилительного каскада с общим эмиттером. Возмущающее воздействие в виде сигнала с изменяющейся частотой и амплитудой поступает на базу VT1. Как только амплитуда колебаний превышает некоторое пороговое значение, транзистор открывается и светодиод вспыхивает.

Недостаток данной простейшей схемы состоит в том, что темп мигания светодиода полностью зависит от уровня звукового сигнала. Другими словами, полноценный цветомузыкальный эффект будет наблюдаться только на одном уровне громкости. Снижение громкости приведёт к редкому подмигиванию, а увеличение – к почти постоянному свечению.

Схема с одноцветной светодиодной лентой

Простейшая вышеприведенная цветомузыка на транзисторе может быть собрана с использованием светодиодной ленты в нагрузке. Для этого нужно увеличить напряжение питания до 12В, подобрать транзистор с наибольшим током коллектора превышающим ток нагрузки и пересчитать номинал резистора. Такая простейшая цветомузыка из светодиодной ленты прекрасно подойдёт начинающим радиолюбителям для сборки своими руками даже дома.

Простая трёхканальная схема

Избавиться от недостатков предыдущей схемы позволяет трёхканальный преобразователь звука. Самая простая схема цветомузыки с разделением звукового диапазона на три части показана на рисунке. Питается она постоянным напряжением 9В и может засветить один или два светодиода в каждом канале. Состоит схема из трёх независимых усилительных каскадов, собранных на транзисторах КТ315 (КТ3102), в нагрузку которых включены светодиоды разного цвета. В качестве элемента для предварительного усиления можно использовать небольшой сетевой трансформатор понижающего типа.

Входной сигнал подаётся на вторичную обмотку трансформатора, который выполняет две функции: гальванически развязывает два устройства и усиливает звук с линейного выхода. Далее сигнал поступает на три параллельно включенных фильтра, собранных на базе RC-цепей. Каждый из них работает в определённой полосе частот, которая зависит от номиналов резисторов и конденсаторов. Низкочастотный фильтр пропускает звуковые колебания частотой до 300 Гц, о чем свидетельствует мигание красного светодиода. Через фильтр средних частот проходит звук в диапазоне 300-6000 Гц, что проявляется в мерцании синего светодиода. Высокочастотный фильтр пропускает сигнал, частота которого больше 6000 Гц, что соответствует зелёному светодиоду. Каждый фильтр оснащен подстроечным резистором. С их помощью можно задать равномерное свечение всех светодиодов, независимо от музыкального жанра. На выходе схемы все три отфильтрованных сигнала усиливаются транзисторами.

Если питание схемы осуществляется от низковольтного источника постоянного тока, то трансформатор можно смело заменить однокаскадным транзисторным усилителем. Во-первых, гальваническая развязка теряет практический смысл. Во-вторых, трансформатор в несколько раз проигрывает схеме, показанной на рисунке, по массе, размерам и себестоимости. Схема простого усилителя звуковой частоты состоит из транзистора КТ3102, двух конденсаторов, отсекающих постоянную составляющую, и резисторов, обеспечивающих транзистору режим с общим эмиттером. С помощью подстроечного резистора можно добиться общего усиления слабого входного сигнала.

В случае когда необходимо усилить сигнал с микрофона, ко входу предыдущей схемы подключают электретный микрофон, подавая на него потенциал от источника питания. Схема двухкаскадного предварительного усилителя показана на рисунке. В данном случае подстроечный резистор стоит на выходе первого усилительного каскада, что даёт больше возможностей для регулировки чувствительности. Конденсаторы С1-С3 пропускают полезную составляющую и отсекают постоянный ток. Для реализации подойдёт любой электретный микрофон, для нормальной работы которого достаточно смещения 1,5В.

Цветомузыка с RGB светодиодной лентой

Следующая схема цветомузыкальной приставки работает от 12 вольт и может устанавливаться в автомобиле. Она совместила в себе основные функции ранее рассмотренных схемотехнических решений и способна работать в режиме цветомузыки и светильника.

Первый режим достигается за счёт бесконтактного управления RGB-лентой при помощи микрофона, а второй – за счёт одновременного свечения красного, зелёного и синего светодиодов на полную мощность. Выбор режима осуществляется при помощи переключателя, размещенного на плате. Теперь остановимся подробно на том, как сделать цветомузыку, которая отлично подойдет даже для установки в авто, и какие детали для этого потребуются.

Структурная схема

Чтобы понять, как работает данная цветомузыкальная приставка, сначала рассмотрим её структурную схему. Она поможет проследить полный путь прохождения сигнала. Источником электрического сигнала является микрофон, который преобразует звуковые колебания от фонограммы. Т.к. этот сигнал чрезмерно мал, его необходимо усилить при помощи транзистора или операционного усилителя. Далее следует автоматический регулятор уровня (АРУ), который удерживает колебания звука в разумных пределах и подготавливает его к дальнейшей обработке. Фильтры разделяют сигнал на три составляющие, каждая из которых работает только в одном частотном диапазоне. В конце остаётся только усилить подготовленный токовый сигнал, для чего используют транзисторы, работающие в ключевом режиме.

Принципиальная схема

На основании структурных блоков, можно перейти к рассмотрению принципиальной схемы. Её общий вид представлен на рисунке. Для ограничения тока потребления и стабилизации питающего напряжения установлен резистор R12 и конденсатор С9. Для задания напряжения смещения микрофона установлены R1, R2, C1. Конденсатор Cfc подбирается индивидуально к конкретной модели микрофона в процессе наладки. Он нужен для того, чтобы немного приглушить сигнал той частоты, которая превалирует в работе микрофона. Обычно снижают влияние высокочастотной составляющей.

Нестабильное напряжение автомобильной сети может оказывать влияние на работу цветомузыки. Поэтому наиболее правильно подключать самодельные электронные устройства через стабилизатор на 12В.

Звуковые колебания в микрофоне преобразуются в электрический сигнал и через С2 поступают на прямой вход операционного усилителя DA1.1. с его выхода сигнал следует на вход операционного усилителя DA1.2, снабженного цепью обратной связи. Сопротивления резисторов R5, R6 и R10, R11 задают коэффициент усиления DA1.1, DA1.2 равный 11. Элементы цепи ОС: VD1, VD2, C4, C5, R8, R9 и VT1 вместе с DA1.2 входят в состав АРУ. В момент возникновения на выходе DA1.2 сигнала слишком большой амплитуды транзистор VT1 открывается и через С4 замыкает входной сигнал на общий провод. Это приводит к мгновенному снижению напряжения на выходе.

Затем стабилизированный переменный ток звуковой частоты проходит через отсекающий конденсатор С8, после чего разделяется на три RC-фильтра: R13, C10 (НЧ), R14, C11, C12 (СЧ), R15, C13 (ВЧ). Чтобы цветомузыка на светодиодах светила достаточно ярко, нужно усилить выходной ток до соответствующего значения. Для ленты с потреблением до 0,5А на каждый канал подойдут транзисторы средней мощности типа КТ817 или импортный BD139 без монтажа на радиатор. Если собираемая светомузыка своими руками предполагает нагрузку около 1А, то транзисторам потребуется принудительное охлаждение.

В коллекторах каждого выходного транзистора (параллельно выходу) стоят диоды D6-D8, катоды которых объединены между собой и выведены на переключатель SA1 (White light). Второй контакт переключателя соединён с общим проводом (GND). Пока SA1 разомкнут, схема работает в режиме цветомузыки. При замыкании контактов переключателя все светодиоды в ленте зажигаются на полную яркость, образуя в сумме белый поток света.

Печатная плата и детали сборки

Для изготовления печатной платы понадобится односторонний текстолит размером 50 на 90 мм и готовый файл .lay, который можно скачать здесь. Для наглядности плата показана со стороны радиоэлементов. Перед выводом на печать необходимо задать её зеркальное отображение. В слое М1 показаны 3 перемычки, размещаемые на стороне деталей. Для сборки цветомузыки из светодиодной ленты своими руками понадобятся доступные и недорогие компоненты. Микрофон электретного типа, подойдет в защитном корпусе со старой аудио аппаратуры. Светомузыка собрана на микросхеме TL072 в DIP8 корпусе. Конденсаторы, независимо от типа, должны иметь запас по напряжению и быть рассчитаны на 16В или 25В. При необходимости конструкция платы позволяет установить выходные транзисторы на небольшие радиаторы. С краю запаивают клеммную колодку на 6 позиций для подачи питания, подключения RGB светодиодной ленты и переключателя. Полный перечень элементов приведен в таблице. В заключение хочется отметить, что количество выходных каналов в самодельной цветомузыкальной приставке можно увеличивать сколь угодно раз. Для этого нужно разбить весь частотный диапазон на большее количество секторов и пересчитать полосу пропускания каждого RC-фильтра. К выходам дополнительных усилителей подключить светодиоды промежуточных цветов: фиолетового, бирюзового, оранжевого. От такого усовершенствования цветомузыка своими руками станет только краше.

Читайте также  Блок avr для бензогенератора - Информационный портал ...
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]