Тиристорный регулятор напряжения простая схема, принцип работы
Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.
Фазовое регулирование напряжения
Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.
Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.
Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.
На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.
Схема тиристорного регулятора напряжения
Таблица номиналов элементов
- C1 – 0,33мкФ напряжение не ниже 16В;
- R1, R2 – 10 кОм 2Вт;
- R3 – 100 Ом;
- R4 – переменный резистор 33 кОм;
- R5 – 3,3 кОм;
- R6 – 4,3 кОм;
- R7 – 4,7 кОм;
- VD1 .. VD4 – Д246А;
- VD5 – Д814Д;
- VS1 – КУ202Н;
- VT1 – КТ361B;
- VT2 – КТ315B.
Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.
В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.
Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.
В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.
Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.
31 thoughts on “ Тиристорный регулятор напряжения простая схема, принцип работы ”
Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке «а» до 1/2 полупериода (до 90 эл. градусов) напряжение на выходе регулятора будет равным практически максимальному, а уменьшаться начнет только при «а» > 1/2 (>90). На графике — красным по серому начертано! Половина полупериода — не половина напряжения.
У данной схемы один плюс — простота, но фаза на управляющих элементах может привести к непростым последствиям. Да и помехи наводящиеся в электросети тиристорной отсечкой немалые. Особенно при большой нагрузке, что ограничивает область применения данного устройства.
Я вижу только одно: регулировать нагревательные элементы и освещение в складских и подсобных помещениях.
На первом рисунке ошибка, 10 мс должно соответствовать — полупериоду, а 20 мс соответствует периоду сетевого напряжения.
Добавил, график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишите про регулировочную характеристику когда нагрузкой является выпрямитель с емкостным фильтром? Тогда да, конденсаторы будут заряжаться на максимуме напряжения и диапазон регулирования будет от 90 до 180 градусов.
подобные схемы собирал…все работают безупречно, только больше нравится на кт 117
Залежи советских радиодеталей есть далеко не у каждого. Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например, 10RIA40M для КУ202Н)?
Тиристор КУ202Н сейчас продают меньше чем за доллар (не знаю, производят ли или старые запасы распродают). А 10RIA40M дорогой, на алиэкспрессе его продают примерно за 15$ плюс доставка от 8$. 10RIA40M имеет смысл использовать только когда нужно отремонтировать устройство с КУ202Н, а КУ202Н не найти.
Для промышленного применения более удобны тиристоры в корпусах TO-220, TO-247.
Два года назад делал преобразователь на 8кВт, так тиристоры покупал по 2,5$ (в корпусе TO-247).
Это и имелось в виду, если ось напряжения (почему-то помечена Р) провести, как на 2-м графике, то станет яснее с градусами, периодами и полупериодами приведенными в описании. Осталось убрать знак переменного напряжения на выходе (оно уже выпрямлено мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продают сейчас на радиорынках действительно за копейки, причем в исполнении 2У202Н. Кто в теме, поймет, что это военное производство. Наверное распродаются складские НЗ, которым все сроки вышли.
На рынке, если брать с рук могут среди новых подложить и выпаянную деталь.
Быстро проверить тиристор, например КУ202Н можно простым стрелочным тестером, включенным на измерение сопротивлений по шкале в единицы ом.
Анод тиристора соединяем на плюс, катод на минус тестера, в исправном КУ202Н утечки быть не должно.
После замыкания управляющего электрода тиристора на анод стрелка омметра должна отклониться, и остаться в таком положении после размыкания.
В редких случаях такой метод не срабатывает, и тогда для проверки понадобится низковольтный блок питания, желательно регулируемый, лампочка от фонарика, и сопротивление.
Вначале устанавливаем напряжение блока питания и проверяем светится ли лампочка, затем последовательно с лампочкой, соблюдая полярность соединяем наш тиристор.
Лампочка должна загореться лишь после кратковременного замыкания анода тиристора с управляющим электродом через резистор.
При этом резистор нужно подбирать, исходя из номинального открывающего тока тиристора и напряжения питания.
Это самые простейшие методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов.
кратковременно проверку выдерживают без сопротивления
На выходе напряжение не выпрямлено мостом.Оно выпрямлено только для схемы управления.
На выходе переменка,мост выпрямляет только для схемы управления.
а как на бернзопиле работает ?
Я бы назвал не регулирование напряжения, а регулирование мощности. Это стандартная схема регулятора освещения, которую раньше собирали почти все. И про радиатор к тиристору загнули. В теории конечно можно, но в практике думаю тяжело обеспечить тепло обмен между радиатором и тиристором для обеспечения 10А.
А какие сложности с теплообменом у КУ202? Вкрутил торцевым болтом в радиатор и все! Если радиатор новый, точнее, резьба не разболтана, даже КТП мазать не надо. Площадь стандартного радиатора (иногда и в комплекте шли), как раз и расчитана на нагрузку 10 А. Никакой теории, сплошная практика. Единственно, что радиаторы должны были находится на открытом воздухе (по инструкции), а при таком подключении сети — чревато. Поэтому закрываем, но ставим кулер. Да, мостовые друг к другу не прислоняем.
А что мешает поставить тиристор на радиатор через слюдяную прокладку? Так в СССР делали часто. В те времена, когда кулер назывался ещё вентилятором, по русски. Конвенцию в корпусе создать то же не сложно, безо всяких кулеров.
Вполне согласен с регулированием отдаваемоей мощности в нагрузку. Тиристор, конечно, не нужно ставить в предельные режимы. А так, моя любимая схема. даже использовал успешно для регулировки в первичной обмотке трансформатора.
Подскажите, что за конденсатор С1 -330нФ?
Наверное правильнее будет написать C1 — 0,33мкФ, можно устанавлиявать керамический или пленочный на напряжение не меньше 16В.
Всем самого доброго! Сначала собирал без транзисторов схемы… Одно плохо — регулировочное сопротивление грелось и выгорал слой графитовой дорожки. Потом собрал эту схему на кт. Первая неудачно — вероятно из-за большого усиления самих транзисторов. Собрал на МП с усилением около 50. Заработала без проблем! Однако есть вопросы…
Я тоже собирал без транзисторов,но ничего не грелось.Это было два резистора и конденсатор,В последствии убрал и конденсатор.Фактически остался переменник между анодом и управляющим,ну и естественно мостик.Использовал для регулировки мощности паяльника,причем как на 220 вольт,так и на первичку трансформатора для паяльника на 12 вольт и все работало и не грелось.Сейчас до сих пор в кладовке лежит в исправном состоянии.У Вас возможно была утечка в конденсаторе между катодом и управляющим для схемы без транзисторов.
Собрал на МП с усилением около 50. Работает! Но стало больше вопросов…
Номиналы R4 и R5 явно перепутаны. Никто не собирал схему в железе?
Можно поконкретнее о диодном мосте. Как направлены диоды?
плюс на право ,минус на лево ))
График неправильный. При 90 градусах *мощность* будет половина. А напряжение будет в корень из двух меньше исходного. Типа от 220 останется 155, а не 110.
А заменить транзисторы на динистор DB3 (стоит 4 рубля) можно? Дайте схему пожалуйста
…а если его — регулировать обороты вентилятора?, (но там индуктивная нагрузка,…. это вопрос).
ЭТИ. ВСЕ. СХЕМЫ. К. СОЖАЛЕНЬЮ. НЕ. РЕГУЛИРУЮТ. **ОТ. НУЛЯ**. НЕ. ЗНАЮ—ПОЧЕМУ. ОБ. **ЭТОМ—-**НИ—СЛОВА*.
потомучто через 0 нужно пройти а не к нулю
дрочелин тс 4.709.017-01 18.5в 2.2 а =40 ват. в сапфир телики .18.5 делить (там 2 обмотки полапам= 8.9 и , если делить 1.8 ампер. ( гретца будет и кз. минимум 1.2а) и 3.5а с куллером держать будет.Перду (на 3 а) не забываем.
Самодельный регулятор напряжения на тиристоре — схема для изготовления
Из-за использования в повседневной жизни большого количества электрических приборов (микроволновок, электрочайников, компьютеров и т.д.) нередко возникает необходимость регулировки их мощностей. Для этого применяют регулятор напряжения на тиристоре. Оно имеет простую конструкцию, поэтому собрать его самостоятельно несложно.
Нюансы в конструкции
Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.
Регулятор состоит из трех компонентов:
- катод – проводник, подключаемый к отрицательному полюсу источника питания;
- анод – элемент, присоединяемый к положительному полюсу;
- управляемый электрод (модулятор), который полностью охватывает катод.
Регулятор функционирует при соблюдении нескольких условий:
- тиристор должен попадать в схему под общее напряжение;
- модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.
Тиристор не применяется в схемах с постоянным током, поскольку он закрывается, если нет напряжения в цепи. В то же время в приборах с переменным током регистр необходим. Это связано с тем, что в подобных схемах имеется возможность полностью закрыть полупроводниковый элемент. С этим справится любая полуволна, если возникнет такая потребность.
Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.
Область применения и цели использования
Используют тиристор во многих электроинструментах: строительных, столярных бытовых и прочих. Он играет в схемах роль ключа при коммутации токов, при этом работая от малых импульсов. Выключается только при нулевом уровне напряжении в цепи. К примеру, тиристор контролирует скорость работы ножей в блендере, регулирует быстроту нагнетания воздуха в фене, координирует мощность нагревательных элементов в приборах, а также выполняет другие не менее важные функции.
В схемах с высокоиндуктивной нагрузкой, где ток отстает от напряжения, тиристоры могут не закрываться полностью, что приведет к поломке оборудования. В строительных приборах (дрелях, шлифовальных машинах, болгарках и т.д.) тиристор переключается при нажатии кнопки, которая находится в общем с ним блоке. При этом происходят изменения в работе двигателя.
Тиристорный регулятор отлично работает в коллекторном двигателе, где есть щёточный узел. В асинхронных движках устройство менять обороты не сможет.
Принцип действия
Специфика работы прибора заключается в том, что напряжение в нем регулируется мощностью, в также электроперебоями в сети. Регулятор тока на тиристоре при этом пропускает его только в одном конкретном направлении. Если устройство не отключить, оно так и будет продолжать работать, пока его не выключат после определенных действий.
Изготавливая тиристорный регулятор напряжения своими руками, в конструкции следует предусмотреть достаточно свободного места для установки управляющей кнопки или рычага. При сборке по классической схеме имеет смысл использовать в конструкции специальный выключатель, который при изменении уровня напряжения светит разными цветами. Это обезопасит человека от возникновения неприятных ситуаций, поражений током.
Способы закрывания тиристора
Подача импульса на управляющий электрод неспособна прекратить его работу или закрыть. Модулятор только включает тиристор. Прекращение действия последнего происходит только после того, как на ступени катод-анод прерывается подача тока.
Регулятор напряжения на тиристоре ку202н закрывается следующими способами:
- Отключить схему от блока питания (батарейки). Устройство при этом не заработает до тех пор, пока не будет нажата специальная кнопка.
- Размокнуть соединение анод-катод с помощью проволоки или пинцета. Через эти элементы идет все напряжение, поступая в тиристор. Если перемычку разомкнуть, уровень тока окажется нулевым и устройство выключится.
- Уменьшить напряжение до минимального.
Простой регулятор напряжения
Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:
- диод – 4 шт.;
- транзистор – 1 шт;
- конденсатор – 2 шт.;
- резистор – 2 шт.
Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.
Способы регулирования фазового напряжения в сети
Изменяют переменное электрическое напряжение при помощи таких электрических приборов, как: тиратрон, тиристор и прочие. При изменении угла этих структур на нагрузку подаются неполными полуволнами, а в результате регулируется действующее напряжение. Искажение вызывает возрастание тока и падение напряжения. Последнее меняет форму из синусоидальной в несинусоидальную.
Схемы на тиристорах
Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.
Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.
Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.
При работе с тиристором импульс на управляющий электрод следует подавать в определенный момент, чтобы срез фаз достиг требуемой величины. Нужно определять переход полуволны в нулевой уровень, иначе регулировка не будет эффективной.
Все своими руками
Тиристорное импульсное зарядное устройство 10А на КУ202
Уважаемые читатели. Дело в том, что сборка моих проектов занимает очень много времени, не простительно много удерживаю средств из семейного бюджета и больше этого делать не буду. Если вам нравиться то, чем я тут занимаюсь и хотите продолжения, то прошу поддержки с вашей стороны. Будет поддержка, будет много нового(чертежи и схемы уже лежат).Поддержать можно тут
Здравствуйте. Сегодня буду рассказывать о давно используемой мной схемой тиристорного фазоимпульсного регулятора мощности, которое я буду использовать как зарядное устройство для свинцовых аккумуляторных батарей
Я уже как то писал о зарядке на тиристоре. Это зарядное на много лучше. Начну описание зарядного на тиристоре ку202 с преимуществ:
— Зарядное легко выдерживает ток до 10А(зависит от тиристора, в данном случае КУ202)
— Ток заряда импульсный, что по мнению многих радиолюбителей, поможет со сроком службы АКБ
— Схема состоит из легкодоступных деталей, можно собрать чуть ли не из хлама
Схема зарядного легко повторима и ее сможет собрать даже новичок, ли ж бы паять умел
— И последнее преимущество,что к этой схеме не требуется никаких примочек. Схема уже снабжена всем необходимо, что бы рукожопые не сожгли ни аккумулятор, ни схему. В схеме зарядного есть защита от короткого замыкания, защита от переполюсовки, а так же ограничитель напряжения зарядки. Ограничение напряжения зарядки дает возможность не следить за окончанием зарядки, а оставлять зарядку без контроля на долгое время, схема сама все отключит
Схема тиристорного зарядного устройства на КУ202
Рассмотрим схему зарядного устройства. Слева на транзисторах Q2Q3 собранна схема тиристорного фазоимпульсного регулятора мощности, о том что это такое в интернете полно информации. Регулировка фазы открытия и соответственно тока зарядки регулируется переменным резистором R4. Транзисторы Q2Q3 это аналог однопереходного транзистора, который можно заменить на КТ117 для облегчения схемы. Силовой тиристор использую КУ202,он у нас доступен и достаточно мощный, что бы заряжать автомобильные аккумуляторы достаточным током. Кстати ток зарядки выставляется на 110 от емкости.
Правая часть схема это защита аккумулятора. На транзисторе Q1Q4 собранны защита от перенапряжение, защита от КЗ и защита от переполюсовки. Включается схема только когда на выход зарядки подключен АКБ. Через делитель R3R6 идет ток, открывая транзистор Q1 и запитывает фазоимпульсный регулятор тока.
Защита от переполюсовки работает так. Когда клемы не правильно подключены, ток идущий через тот же делитель запирает транзистор, соответственно ток на регулятор мощности не идет.
Отсекатель зарядки работает достаточно просто, когда напряжение окончания зарядки достигает 14.4В, напряжение на делителе R8R11 становиться достаточным для пробоя стабилитрона, транзистор Q4 открывается, закрывая собой Q1
И самое главное в схеме, это трансформатор. Питается схема от трансформатора с напряжением 18-25В. В моем случае на время испытаний питал зарядное от Регулируемого источника переменного тока.
Печатная плата тиристорного зарядного устройства для автомобильных аккумуляторов
Скачать печатную плату тиристорного зарядное устройства
Как изготовить печатную плату своими руками, можно посмотреть в статье Как изготовить печатную плату.
На выходе на плате установлены два светодиода для индикации подключения АКБ. Зеленый сигнализирует правильно подключенный аккумулятор, красный- полярность нарушена или переполюсовка. Так же на выход не плохо поставить предохранитель, ну на всякий случай
Теперь об испытания. Схема спаянна и собранна, диодный мост и тиристор установлены на радиаторы, выходные провода припаяны.
Печатная плата использовалась от старых зарядных и подготовлена под мощные резисторы. Но так как я пересчитал номиналы, то теперь все резисторы можно использовать на 0,25Вт. Так же транзисторы использовал типа КТ315 КТ361, старые но надежные. Можно использовать КТ3102 КТ3107 КТ814 КТ815 КТ816 КТ817
Испытания проведу на гелевом акб, влень с машины снимать нормальную акуму! На этой фото я намеренно подключил зарядку неправильно, но кроме загоревшегося красного светодиода ничего не произошло. Так и должно быть
А теперь правильно подключил и ток побежал. На фото минимальные показания тока, но можно сделать меньше увеличив номинал R4, допустим до 33кОм. Я оставил минимальный ток в 2А, так как меньше ток нет смысла ставить для автомобильного АКБ
А здесь максимальный ток в 8А. Этот показатель регулируется резистором R2. Чем меньше резистор, тем выше максимальный ток. Но гнаться за током не стоит, так как КУ202 больше 10А не вытянет, да и тока 10А вполне достаточно для зарядки АКБ емкостью в 120А.ч.
На фото почти заряженный аккумулятор и пришло время сделать всего одну настройку, это выставить максимальное напряжение. Для этого нужно подождать пока акума зарядиться до 14,4В и переменным резистором R8 выставить момент что бы напряжение выше не поднималось.
И все схема собранна, зарядка заряжает защиты работают. На этом пока остановлючь, эта схема была собрана что бы пересчитать номиналы резисторов, рассказать вам о принципе работы и что я с ней буду дальше делать расскажу в статье про пуско зарядное устройство, а пока все.
Благодаря читателю удалось узнать автора доработки схемой автоматического отключения, автор master144, а обсуждение на форуме тут
Хотите такое же устройство?
Напишите мне на внутреннюю почту Вконтакте.
А так же подписывайтесь на обновления в группе, кнопки вверху сайта, и всегда будете в курсе последних обновлений
С ув. Эдуард