Биполярный транзистор основные характеристики

Биполярный транзистор основные характеристики

Биполярный транзистор основные характеристики

Биполярный транзистор – полупроводниковый элемент с двумя pn переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают pnp и npn типа. На рис. 1, а и б показаны их условные обозначения.

Рис. 1. Биполярные транзисторы и их диодные эквивалентные схемы:

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p— или n— слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис. 2.

Транзисторы npn типа подчиняются следующим правилам (для транзисторов pnp типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

  1. Коллектор имеет более положительный потенциал, чем эмиттер.
  2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением:
  1. Каждый транзистор характеризуется максимальными значениями IК,IБ,UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуре, UБЭ и др.
  2. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы.

Соотношение токов коллектора и эмиттера приблизительно равно

где α = 0,95…0,99 – коэффициент передачи тока эмиттера.

Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 2, а) представляет собой базовый ток

Ток коллектора зависит от тока базы в соответствии с выражением:

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора

Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Схемы включения транзистора

В зависимости от того, какой из выводов транзистора является общим для входа и выхода, различают схему включения транзистора с общим эмиттером (ОЭ), рис. 2, общей базой (ОБ) рис. 3, а, и общим коллектором (ОК) рис. 3, б.

В случае включения транзистора в схему с ОЭ входным током является ток базы, выходным – ток коллектора. Схема с ОЭ является самой распространенной, так как она дает наибольшее усиление по мощности. Усилительные свойства транзистора при включении его по схеме с ОЭ характеризует один из главных его параметров – коэффициент передачи тока базы – β. Коэффициент β для разных транзисторов лежит в диапазоне от десятков до тысяч, а реальный коэффициент усиления по току каскада всегда меньше, так как при включении нагрузки ток коллектора транзистора уменьшается.

Важная величина, характеризующая транзистор – его входное сопротивление. Для схемы с ОЭ оно составляет от сотен до единиц кОм, что является сравнительной малой величиной. Это существенный недостаток биполярных транзисторов. Выходное сопротивление схемы составляет от единиц до десятков кОм.

К недостаткам схемы с ОЭ относятся также меньший по сравнению со схемой ОБ частотный диапазон и меньшая температурная стабильность.

В схеме с ОБ выходным током является ток коллектора, а входным – ток эмиттера. Хотя эта схема дает значительно меньшее усиление по мощности и имеет еще меньшее входное сопротивление, чем схема с ОЭ, все же ее иногда применяют, так как по своим частотным и температурным свойствам она значительно лучше схемы с ОЭ. Коэффициент усиления по току каскада несколько меньше единицы, по напряжению – такой же, как и в схеме с ОЭ. Входное сопротивление для схемы с ОБ получается в десятки раз меньше, чем в схеме с ОЭ, выходное сопротивление в этой схеме получается до 100 кОм. Следует отметить, что каскад с ОБ вносит при усилении меньшие искажения, чем каскад по схеме с ОЭ.

В схеме с ОК (рис. 3, б) коллектор является общей точкой входа и выхода, поскольку источники питания Е1 и Е2 всегда шунтированы конденсаторами большой емкости и для переменного тока могут считаться короткозамкнутыми. Особенность этой схемы в том, что входное напряжение полностью передается обратно на выход, т.е. сильна отрицательная обратная связь. Именно поэтому такой каскад называют эмиттерным повторителем.

Коэффициент усиления по напряжению схемы с ОК близок к единице, причем всегда меньше ее, коэффициент усиления по току почти такой же, как в схеме с ОЭ, коэффициент усиления по мощности равен нескольким десяткам. Входное сопротивление каскада в схеме с ОК составляет десятки килом, выходное – единицы килом и сотни Ом, что является важным достоинством схемы.

Схема с ОК называется эмиттерным повторителем и используется для согласования источников сигналов и нагрузок.

Транзистор как активный нелинейный четырехполюсник

Основными параметрами, характеризующими транзистор как активный нелинейный четырехполюсник (при любой схеме включения), являются коэффициенты усиления:

  • по току кI= ΔIВЫХ/IВХ;
  • по напряжению кU= ΔUВЫХ/ΔUВХ;
  • по мощности кР = кI·кU= ΔРВЫХ/ΔРВХ;
  • входное сопротивление RВХ=UВХ/IВХ;
  • выходное сопротивление RВЫХ=UВЫХ/IВЫХ.

Для удобства сравнения параметры трех схем включения транзисторов сведены в табл. 1.

Характеристики биполярного транзистора

Характеристики биполярного транзистора в основном нелинейные и выражаются сложными формулами, неудобными на практике. Поэтому проще и нагляднее использовать графики зависимости параметров транзистора между собой . Так же удобнее изображать измеренные показания параметров конкретного транзистора графическим способом.

Статические характеристики биполярного транзистора c ОЭ

Статические характеристики биполярного транзистора отражают зависимость между напряжениями и токами на его входе и выходе при отсутствии нагрузки.
Эти характеристики будут разные в зависимости от выбранного способа включения транзистора. В основном применяются характеристики со схемами включения с общей базой (ОБ) и общим эмиттером (ОЭ).

Для снятия входных и выходных характеристик биполярного транзистора с ОЭ можно использовать схему как на рис.1 . В ней при помощи потенциометров R1 и R2 подаются нужные напряжения в базовую и коллекторную цепи с определенным током.

Входные характеристики биполярного транзистора

На рис.2 , для сравнения, показаны входные характеристики биполярного транзистора с ОЭ германиевого и кремневого транзисторов. Они выражают (при определенном напряжении между коллектором и эмиттером Uкэ ) зависимость базового тока Iб от приложенного между базой и эмиттером напряжением Uбэ . По форме они нелинейны и похожи на характеристики диодов, т.к. эмиттерный переход транзистора можно представить в виде диода включенным в прямом направлении.
Для каждого типа транзисторов при увеличении коллекторного напряжения характеристики немного смещаются в сторону увеличения базового напряжения, но на практике это увеличение не учитывается.
Из графиков еще видно , что в схеме с ОЭ базо-эмиттерное напряжение в германиевых транзисторах не превышает 0,4В, а в кремниевых — 0,8В. При превышении этих входных напряжений токи, проходящие через транзистор, могут стать недопустимо большими, которые приведут к пробою транзистора.

Так как входная характеристика биполярного транзистора нелинейна, значит и входное сопротивление, зависящее от входного напряжения и тока, тоже нелинейно.
Для примера определим базовый и коллекторный токи транзистора МП42Б с коэффициентом усиления β=50 ( рис.3 ) в разных точках характеристики.
В точке А базовый ток Iб=0,02mA и тогда коллекторный ток равен
Iк=β•Iб=50•0.02=1mA.
Можно наоборот определить на графике по известному коллекторному току Iк=13mA базовое напряжение Uэб . Базовый ток при таком Iк равен:
Iб=Iк/β=13/50=0,26mA.
Значит Uэб=0,25В ( точка В ).
На этой же характеристике так же можно найти входное сопротивление транзистора для постоянного и переменного (дифференциально динамического) токов.
Сопротивление по постоянному току относится к постоянной составляющей сигнала, а по переменному току — к переменной составляющей сигнала. Входное сопротивление по переменному току имеет существенное значение для согласования между собой транзисторных каскадов.
Сопротивление по постоянному току определяется по закону Ома:
R_=U/I .
В точке А на графике оно будет равно:
Rвх_= Uбэ/Iб = 0,1/ 0,02•10ˉ³ = 5 кОм.
Таким же образом находим сопротивление в точке Б — Rвх_= 1,6 кОм, и в точке В — Rвх_= 1 кОм.
Сопротивление по переменному току находим тоже по закону Ома, но в только в дифференциальной форме:
Rвх

= ∆U/∆I ,
где ∆U ) и ∆I ) — приращения напряжения и тока возле выбранной точки.
Для примера определим сопротивление по переменному току в точке Б ) ( рис.4 ). Задаем приращения (желтый треугольник на рисунке):
∆Uбэ = 0,225-0,175 = 0,05 В,
∆Iэ = 0,16-0,06 = 0,1 mA.
Тогда сопротивление по переменному току равно:
Rвх

=0,05/0,1•10ˉ³ = 500 Ом
Аналогично вычислим сопротивление по переменному току в точке А — Rвх

= 4кОм, а в точке В — 400 Ом. Обычно в схеме с ОЭ это сопротивление бывает в пределах от 500 Ом до 5 кОм.

Выходные характеристики биполярного транзистора

Выходные характеристики биполярного транзистора показывают зависимость коллекторного тока Iк ) от выходного напряжения Uэк ) при определенном базовом токе Iб .

На рис.5 приведено семейство выходных характеристик транзистора.
На графике видно, что выходные характеристики нелинейны, и что при увеличении напряжения Uэк от нуля до 0,4÷0,8 вольт коллекторный ток увеличивается быстро, а затем приращение уже мало и почти не зависит от величины Uэк , а зависит от базового тока. Отсюда можно сделать вывод: в основном базовый ток управляет коллекторным током.

По выходной характеристике транзистора МП42Б ( рис.6 ) определим в точке Б коллекторный ток при Uкэ = 5,7 В и Iб = 40 μA. Он будет равен Iк = 4,5 mA.
А для точки А ток базы при коллекторном напряжении Uкэ = 5,7 В и Iк = 8 mA будет Iб = 80 μA.

Так же по выходной характеристике этого транзистора можно найти выходные сопротивления для постоянного и переменного токов.
Сопротивление по постоянному току в точке Б будет равно:
Rвых_= Uкэ/Iк = 5,7/4,5•10ˉ³ = 1,3 кОм.
Сопротивление по переменному току при приращении:
∆U = 8-3 = 5 В; ∆I = 4,5-4 = 0,5 mA
равно:
Rвых

= ∆U/∆I = 5/0,5•10ˉ³ = 10 кОм.
Это cопротивление может достигать 50 кОм.

Статические характеристики биполярного транзистора с ОБ.

Для снятия входных и выходных характеристик биполярного транзистора с ОБ используют схему как на рис7 . В ней при помощи потенциометров R1 и R2 подаются нужные напряжения в базовую и коллекторную цепи с определенным током.

Входные характеристики биполярного транзистора

Входные характеристики биполярного транзисторат с ОБ показывают, как зависит эмиттерный ток Iэ от напряжения между эмиттером и базой Uэб при выбранном напряжении Uкб ( рис.8 ) для транзисторов разной проводимости.
Сравнив с входной характеристикой биполярного транзистора с ОЭ видим, что они похожи, но и имеют различия.
Это, во-первых, при увеличении коллекторного напряжения ветви характеристик германиевых и кремниевых транзисторов смещаются влево, Во-вторых, ток эмиттера в этом случае намного больше чем базовый ток при включении с ОЭ и масштаб измерения по оси ординат уже не в микроамперах, а в милиамперах.
По входным характеристикам биполярного транзистора с ОБ можно определить такие же параметры как и с ОЭ: зависимость Iэ от Uэб , входные сопротивления Rвх_ и Rвх

.
По параметрам входной характеристики ( рис.9 ) найдем входные сопротивления в точке А :
∆Uэб= 0,225-0,175 = 0,05 В,
∆Iэ = 16- 6 = 10 mA.
Rвх_= Uбэ/Iэ = 0,2/10•10ˉ³ =20 Ом,
Rвх

= ∆Uэб/∆Iэ =0,05/10•10ˉ³ = 5 Ом.
Вывод: входные сопротивления в схеме с ОБ на много меньше чем с ОЭ и обычно не превышают 100 Ом.

Выходные характеристики биполярного транзистора

На рис.10 показано семейство выходных характеристик биполярного транзистора МП42Б которые выражают зависимость коллекторного тока Iк от выходного напряжения Uбк при определенном эмиттерном токе Iэ . Они чем то похожи на выходные характеристики с ОЭ, но имеют и большие различия.
Одним из отличий является то, что коллекторный ток протекает даже тогда, когда коллекторное напряжение равно нулю. Причина в наличии источника тока в цепи эмиттера.
Второе отличие — выходные характеристики в схеме с ОБ почти горизонтальны, а это значит, что выходное сопротивление больше чем при ОЭ и может достигать по переменному току до 2 МОм.

Статические характеристики прямой передачи по току биполярного транзистора

По характеристике прямой передачи транзистора по току, которая представляет собой связь между входным и выходным токами, можно определить коэффициенты усиления по току в схеме с ОЭ и ОБ как на рис.11
.Коэффициент усиления по току с ОЭ равен:
β=∆Iк/∆Iб
где ∆Iк=2,8-2=0,8 mA;
∆Iб=30-20=10 μА.
β=0,8/10•10ˉ³= 80.
Коэффициент усиления по току с ОБ равен:
α=∆Iк/∆Iэ
где ∆Iк=2,8-2=0,8 mA;
∆Iэ=3-2=1 mA;
α=0,8/1=0,8.
Можно сделать вывод, что при включении транзистора с ОБ усиление по току почти не происходит.

Биполярные транзисторы. Виды и характеристики. Работа и устройство

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:

  • Материалу изготовления: кремний или арсенид галлия.
  • Величине частоты: до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности: 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора: 3 слоя полупроводника с последовательной очередностью типа проводимости.
Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Bipoliarnye tranzistory struktura

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

Bipoliarnye tranzistory ustroistvo

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Практически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы Iб. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, практически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к.

Характеристики
  • Коэффициент усиления тока β = Iк / Iб.
  • Коэффициент усиления напряжения Uэк / Uбэ.
  • Сопротивление на входе.
  • Характеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.
Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление RL, которое также включено в цепь коллектора.

Skhema s obshchim kollektorom

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

Сигнал входа проходит через С1, далее снимается в цепи выхода коллектора, где базовый электрод общий. В итоге образуется усиление напряжения по подобию с общим эмиттером.

Skhema s obshchei bazoi

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки RL, к эмиттеру питание подключается отрицательным полюсом.

Skhema s obshchim emitterom

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С1, которая не дает пройти току на вход, сопротивление R1, благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik R k +Vk e .

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется характеристиками частоты полупроводников.

Читайте также  Чем заменить контактную сварку
Отсечка

Этот режим образуется при снижении напряжения VБЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства характеристик выхода влияют на режимы. Это изображено на графике.

Bipoliarnye tranzistory grafik

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной характеристикой выхода и осью V ke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Характеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении IВ ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью I k и наиболее крутым графиком.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector