Карбонитрация стали в домашних условиях

Карбонитрация стали в домашних условиях

Карбонитрирование стали

Карбонитрирование стали – особый способ химико-термической обработки стальных деталей, который предусматривает улучшение свойств прочности, стойкости к усталости металла и устойчивости к коррозии. Суть такой обработки заключаться в усилении верхних слоев стали путем насыщения ее азотом и углеродом. Процесс насыщения происходит путем диффузного обмена, в процессе окунания металлов в расплав солей.

Технология карбонитрации стали

Карбонитрация может проводиться деталями любых размеров, из любых сплавов стали и чугуна. Причем возможно подвергать обработке только отдельные участки детали, повышение твердости которых необходимо. Для этого процесса применяется состав солей, в основе которых лежат меламин и дицианидиамид. Соли расплавляются при температуре свыше 550 градусов. Длительность выдержки обрабатываемых деталей может значительно разниться. Для небольших предметов, в основном режущего инструмента, достаточно получаса вдержки. Большие предметы могут обрабатываться более 4 часов. Расчет времени проводится на основе размеров предмета, требуемых конечных характеристик и необходимый толщины карбонизированного слоя.

Технология не слишком сложная, главное соблюдать требуемый диапазон рабочих температур и учитывать марку стали обрабатываемых деталей.

Стоит отметить, что с помощью такой химико-термической обработки можно полностью заменить процессы закалки, хромирования, цементации и гальванизации.

Она помогает добиться повышенных характеристик прочности стали, устойчивости к коррозии и воздействию высоких нагрузок.

В конце обработки на поверхности стали образуется несколько слоев. Первый слой – карбонидный, защищающий сердцевину. С каждым новым слоем концентрация азота и углерода в составе стали уменьшается.

Традиционная технология выглядит следующим образом:

  • предмету придается конечная форма и требуемые геометрические параметры, после чего он направляется на обработку (если требуется полировка, размеры детали можно немного увеличить);
  • проводится первичная обработка, в которую входит очистка от загрязнений, окисления и обезжиривается поверхность;
  • нагрев и опускание в соленую смесь;
  • после карбонитрации сталь охлаждается (можно применять различные методы, используя воду, масло, или оставляя на воздухе);
  • конечная очистка, промывка и просушка.

Эта технология становиться все более популярной из-за ряда преимуществ, выделяющих ее среди аналогов. К ним можно отнести:

  1. Качество верхнего слоя. Карбонитридная структура значительно превышает характеристики нитридных, так как она более пластичная и не такая хрупкая.
  2. Экологичность. Данный процесс наиболее экологически чистый среди аналогов, так как в процессе производства практически не выделяются испарения.
  3. Равномерность. В расплавленных солях металл равномерно прогревается, из-за чего диффузные процессы более качественные.
  4. Отсутствие деформации. Температуры расплавленных солей недостаточно для того, чтобы на поверхности предмета образовалось напряжение и произошла деформация. Изначальные и конечные геометрические параметры детали не отличаются.
  5. Повышение стойкость. Обработанные предметы становятся более стойкими к нагрузкам, воздействию коррозии и становятся более долговечными. Каждый из этих параметров может превышать первоначальные более чем на 70%.
  6. Пластичность покрытия. Готовое покрытие становится менее хрупким, что особо важно в процессе эксплуатации готовых деталей, особенно режущих кромок. При этом снижается коэффициент трения, что также значительно увеличивает срок эксплуатации.
  7. С помощью карбонитрации сталь даже низких марок, пример, стали 20 марки, которые не отличаются прочностными характеристиками, можно улучшать, приближая их свойства к параметрам дорогих марок стали, которые сложнее обрабатывать. Это позволяет экономить не только на покупке сырья, но и на процессе обработки.
  8. Обработанные детали не требуют дополнительной обработки. После выполнения карбонитрации, деталь или предмет можно полноценно эксплуатировать. В некоторых случаях требуется поверхностная обработка, которая не влияет на физические свойства.

Из-за безопасности и простоты технологии, ее можно выполнять даже в домашних условиях, но проще воспользоваться услугами, которые предоставляют некоторые предприятия и небольшие мастерские. Особенно если требуется разовая обработка, так как нецелесообразно устанавливать специальную печь и искать подходящую солевую смесь.

Подобная обработка широко распространена для следующих предметов:

  • режущий инструмент, в том числе ножи, сверла для электроинструмента, фрезы для станков;
  • формы для прессов, предусматривающих воздействие высокого давления;
  • элементы пары трения и зубчатых передач, в том числе шестерни, валы и колеса;
  • детали и элементы насосных установок.

Номенклатура обрабатываемых предметов постоянно растет, очень часто производители для надежности обрабатывают весь спектр производимых деталей, независимо от того, требуется она или нет. Это обусловлено простотой и относительной дешевизной такой процедуры.

Свойства карбонитрированного слоя

Процесс карбонитрации довольно прост, но для успешного завершения обработки стоит строго придерживаться технологии и не пренебрегать ни одним из пунктов. В конечном итоге готовый результат должен иметь следующие свойства:

  1. Толщина карбонидного слоя должна составлять более 0,01 мм и менее 0,6 мм.
  2. Твердость полученного слоя должна соответствовать показателям диапазона 400-1200 HV.
  3. Должна отсутствовать хрупкость обработанного слоя.
  4. Коэффициент трения материала снижается более чем в полтора раза.
  5. Стойкость стали к износу должна увеличиться в два и боле раз.
  6. Усталостная прочность обработанного материала повышается в полтора раза.
  7. Обработанная деталь не должна терять форму, искривляться и коробиться.
  8. Устойчивость к коррозийным процессам повышается более чем в 2 раза.

Если обработанный материал не соответствует хотя бы одному из вышеуказанных свойств, это может свидетельствовать о нарушении технологии выполнения и несоответствии готового результата с первоначальными требованиями.

Например, высокий коэффициент трения негативно влияет на износостойкость деталей, сохранность карбонидного слоя, сохранение геометрических параметров во время эксплуатации и срок эксплуатации.

Применяемое оборудование

Оборудование для карбонитрации представлено на рынке различными моделями, которые отличаются мощностью, степенью автоматизации и количеством выполняемых работ. Для промышленных предприятий лучше всего подходят модульные линии обработки, которые состоят из подготовительного, основного, экологического модулей. Некоторые модели дополняются модулями промывки и охлаждения.

  1. Подготовительный модуль – состоит печи, в которую загружается смесь солей и обрабатываемый материал, в зависимости от требований может компоноваться оборудованием для мойки и обезжиривания деталей. На этом этапе детали подготавливаются к обработке, очищаются и подогреваются.
  2. Основной – состоит из оборудования для карбонитрации. Может дополняться оборудованием в зависимости от типа обрабатываемых предметов. В этом модуле может быть установлена печь двух типов: печь-ванна и электронная, предусматривающие нагрев до 1000 градусов. Установка печи и другого оборудования производиться таким образом, чтобы в случае поломки их можно было оперативно заменить.
  3. Модуль охлаждения и промывки — на этом этапе обработанные детали охлаждаются в подходящей среде, и очистки от следов соли.
  4. Экологический – предусматривает избавление от отходов, фильтруя их и собирая в специальных стоках.

На сегодняшний день можно найти качественное оборудование как импортного, так и отечественного производства, причем большинство производителей предоставляют услуги индивидуального планирования. В процессе разработки проекта учитывается необходимая мощность, количество процессов обработки, размеры и особенности производственного цеха и другие пожелания клиента.

Карбонитрация – эффективный метод поверхностного упрочнения деталей машин и инструмента

Карбонитрация используется для повышения износостойкости и усталостной прочности деталей, а в сочетании с оксидированием, и для увеличения их коррозионной стойкости. Во многих случаях эта технология является выгодной альтернативой таким процессам, как поверхностная закалка, гальваническое хромирование, цементация, нитроцементация и другие.

Суть карбонитрации или метода «жидкостного» азотирования заключается в упрочнении поверхностного слоя изделий из стали и чугуна методом диффузионного насыщения азотом и углеродом в расплаве солей, синтезированных из аммоноуглеродных соединений (меламин, мелон, дициандиамид), при температуре 560-580°С.

Поскольку данный процесс предполагает одновременное насыщение как азотом, так и углеродом, то в поверхностном слое металла образуются карбонитридные фазы, которые являются более пластичными и не имеют такой хрупкости, как чисто нитридные, получаемые при газовом азотировании, являющимся наиболее близким аналогом описываемого метода.

Среди всех технологий низкотемпературного упрочнения, он является наиболее экономичным процессом, так как при одинаковых требованиях к толщине упрочненного слоя в 5 и более раз сокращается длительность насыщения (до 0,5-4 ч, вместо 10-60 ч), по сравнению с газовым азотированием.

Технология карбонитрирования позволяет упрочнять поверхность деталей практически из любых марок стали и чугуна. Толщина упрочненного слоя для перлитных сталей гарантированно составляет от 0,3 до 0,6 мм, для высоколегированных и специальных сталей – порядка 0,1 мм, но при этом слой получается очень твердый и значительно повышает их усталостную прочность и износостойкость.

Преимущества процесса карбонитрации:

  • высокая скорость и равномерность насыщения и нагрева;
  • снижение термических напряжений, что обеспечивает минимальные величины деформаций в пределах допуска чертежа (обеспечивает микронную точность);
  • регулирование в широких пределах скорости охлаждения после насыщения;
  • повышение усталостной прочности деталей на 50-80%;
  • значительное увеличение износостойкости деталей (в 2-11 раз), по сравнению с цементацией, нитроцементацией, газовым азотированием,
  • технология применима для упрочнения деталей из любых марок сталей и чугуна;
  • является наиболее экономичным процессом, т.к. сокращает длительность насыщения до 0,5-4 ч, вместо 10-60 ч при газовом азотировании;
  • отсутствует хрупкость карбонитрированного слоя;
  • повышение коррозионной стойкости перлитных сталей в 1,5-2 раза;
  • снижение коэффициента трения в 1,5-5 раз.

Один из важных аспектов – возможность упрочнения изделий из недорогих низкоуглеродистых сталей (типа стали 20, 40, 45), которые практически не азотируются традиционным методом. При этом в процессе карбонитрации им можно придать высокую поверхностную твердость (от 45 до 60 HRC), соответствующую свойствам более дорогих и сложных в обработке марок сталей.

Также данный метод хорошо применим и для обработки высоколегированных коррозионностойких сталей. Поскольку на их поверхности имеется пассивирующая пленка, состоящая из оксидов хрома и других легирующих элементов, традиционное газовое азотирование таких сталей проходит с большими сложностями, а для отдельных марок данный процесс невозможен в принципе.

Еще один существенный довод в пользу применения данной технологии заключается в том, что карбонитрация – это, по сути, финишный процесс. При других методах повышения поверхностной прочности деталей необходимо предусматривать припуск на последующую механическую обработку, поскольку при упрочнении происходит определенное изменение размеров или деформация, которые, как правило, необходимо компенсировать последующей шлифовкой. После карбонитрации такого не наблюдается: рядовые детали могут эксплуатироваться без дополнительной мехобработки, а более ответственные – после полировки (хонингования) на глубину 1-2 мкм.

Благодаря высокой равномерности нагрева, обеспечиваемой в расплаве солей, коробление и деформация деталей в процессе карбонитрации исключены при условии проведения соответствующим образом предварительной термообработки – стабилизирующего отпуска, снимающего напряжения после мехобработки.

Еще одной особенностью данной технологии является возможность обработки деталей с частичным погружением, когда необходимо упрочнить только определенный участок, что в газовой азотировочной печи или при цементации, нитроцементации реализовать практически невозможно.

Каким образом ООО «НТУ «Карбаз» оказывает своим клиентам услуги по упрочнению деталей методом карбонитрации?

Последовательность операций следующая: мы получаем от заказчика окончательно готовые детали (при необходимости, выполненные с минимальным припуском под полировку посадочных поверхностей), далее они проходят предварительную подготовку – очистку и обезжиривание, затем следует подогрев в специальной печи и далее собственно «жидкостное» азотирование – карбонитрация. По окончании этого процесса производится охлаждение деталей на воздухе, в воде или масле в зависимости от марки стали. В случае необходимости дополнительного повышения коррозионной стойкости выполняется оксидирование деталей в отдельной печи-ванне. Далее выполняется промывка, сушка и все – деталь готова к отгрузке заказчику.

По сравнению с традиционными методами химико-термической обработки, такой процесс занимает в разы меньше времени. К примеру, деталь типа «кольцо» диаметром

200-300кг, с момента поступления к нам на обработку, с учетом подготовительно-заключительных операций и получения требуемой глубины слоя, уже через 8-12 часов может быть отгружена заказчику.

С момента освоения нами данной технологии, в течение более 2-х лет, методом карбонитрации в ООО НТУ «Карбаз» было проведено упрочнение широчайшей номенклатуры деталей из сталей и чугуна:

  • режущий инструмент – сверла, метчики, фрезы, ножи;
  • пресс-формы различного назначения – для литья под давлением, прессования полимерных и др. материалов;
  • пары трения — штока, поршни, пробки, седла, золотники, пальцы;
  • элементы зубчатых передач – колеса, шестерни, звездочки, вал-шестерни, торсионы и т.д.;
  • детали насосов – рабочие колеса, уплотнительные и щелевые кольца, втулки;
  • валки для размалывания неметаллических материалов
  • и мн. др.

На сегодняшний день сфера применения данной технологии расширилась настолько, что некоторые заказчики (машиностроительные, ремонтные предприятия) привозят к нам на упрочнение практически все детали, как говорится «из под резца», мотивируя это тем, что в любом случае после карбонитрирования они будут иметь более высокие рабочие характеристики и коррозионную стойкость.

Очень важный и актуальный вопрос – соответствие предлагаемой технологии экологическим нормам и требованиям. В данном аспекте процесс карбонитрации абсолютно безопасен, поскольку основан на использовании неядовитых соединений (цианаты и карбонаты щелочных металлов). Необходимые проверки проводились еще в Советском Союзе, непосредственно в ходе самого процесса разработки технологии. Современные заключения органов промсанитарии также однозначны – технология абсолютно безопасна и может использоваться в промышленных целях, без каких-либо ограничений.

За счет использования испарителя, технология карбонитрации не дает жидких отходов. Вода, используемая для промывки, выпаривается, получаемый сухой остаток классифицируется по 3-му классу безопасности, и может быть утилизирован как обычный производственный мусор.

История процесса жидкостного азотирования берет свое начало еще с 30-х годов прошлого столетия. Окончательно задача, связанная с разработкой технологически приемлемой жидкой среды для низкотемпературного упрочнения металлических изделий, была решена в 70-е годы в МГТУ им. Н.Э. Баумана. Именно тогда была предложена к промышленному применению экологически чистая технология и получившая название – «карбонитрация».

Впоследствии, на основе собственных разработок, подобные методики упрочнения поверхностей деталей появились в Германии (Тенифер-процесс), в США (Мелонайт), в Японии («Мягкое азотирование»), Франции (Сюрсульф). Сейчас эти технологии широчайшим образом распространены в этих и других странах. В России в последние годы процесс карбонитрации также находит все более широкое распространения на предприятиях машиностроительной отрасли.

В Украине наше предприятие не первым начало применение карбонитрации. Тем не менее, уже на первых пробах выяснилось, что данная технология, благодаря своей простоте и высокой эффективности. действительно востребована на машиностроительных предприятиях. И сегодня спрос на этот метод повышения долговечности и работоспособности деталей машин и инструмента только растет.

На нынешнем этапе деятельности ООО «НТУ «Карбаз» предлагает только услуги по упрочнению, но мы находимся в начальной стадии освоения процесса карбонитрации и рассчитываем, что в дальнейшем будем рассматривать возможности ее внедрения на других предприятиях – с поставкой и монтажом требуемого комплекта оборудования и обучением персонала. Все это в перспективе и в наших планах.

Карбонитрирование стали — технология, свойства, оборудование

Химико-термическая обработка – это комплекс операций по изменению химического состава и микроструктуры поверхности заготовки или изделия с целью получения требуемых характеристик. Такое изменение является результатом взаимодействия поверхности с окружающей средой определенного состояния, состава, температуры. Наиболее распространенные виды химической обработки – цементация (науглероживание), азотирование, карбонитрация (одновременное насыщение углеродом и азотом).

Технология цементации стали

Этот процесс подразумевает диффузионное насыщение поверхностного слоя стальных заготовок углеродом. Обработка осуществляется в карбюризаторе, выделяющем активный углерод, при температурах устойчивости аустенита – 850-950°C, хорошо растворяющего большое количество углерода. Для завершения процесса после цементации проводят закалку и низкий отпуск. Результаты химико-термической и термической обработок в комплексе:

  • высокая твердость и износостойкость поверхности;
  • повышение предела контактной устойчивости;
  • улучшение показателей предела выносливости при изгибе и кручении.

Внимание! Желаемый эффект достигается на сталях с низким содержанием углерода – до 0,2%. Без цементации такие марки закалить невозможно. Чаще всего цементации подвергают легированные стали.

Эта операция является длительной, поскольку процесс науглероживания протекает очень медленно. Основные типы сред для цементации (карбюризаторов):

  • твердые;
  • газообразные;
  • растворы электролитов;
  • пасты;
  • кипящий слой.

Отличительные признаки:

  • Модульная компоновка (подготовительный, основной, экологический модули, а также модуль охлаждения и промывки) позволяет в широких пределах варировать конфигурацией оборудования и технологиями упрочнения.
  • Обработка с частичным погружением позволяет проводить упрочнение отдельных участков деталей.
  • Высокая скорость обработки деталей в расплавах, по сравнению с газовыми технологиями достигаются за счет значительного сокращения времени прогрева и выдержки.
  • Отсутствие газообразных выбросов и жидких отходов обеспечивается экологическим модулем, в который входит воздушный фильтр и испаритель промышленных стоков.

Структура карбонитрированного слоя

В процессе карбонитрации на поверхности сталей формируется упрочненный слой, состоящий из нескольких зон. Верхний слой представляет собой ε-карбонитрид типа Fe3 (N, C) — зона соединений (Compound layer), т. н. «белый слой», под которым находится диффузионная зона (Diffusion layer), т. н. «гетерофазный слой», состоящий из твердого раствора углерода и азота в железе с включениями карбонитридных фаз, твердость которой значительно выше твердости сердцевины.

Типовая микроструктура стали после карбонитрации

Схема образования упрочненного слоя в расплаве солей

Сталь 3. Карбонитрация 580 °С, 3 часа. Глубина слоя – 0,2 мм

Ниже приведены результаты проведенных компанией DURFERRITE (Германия) коррозионных испытаний упрочненного слоя, полученного методом TENIFER-QPQ, в сравнении с другими способами поверхностной обработки.

Зависимость износа образца из Cтали 20 от пути трения со смазкой. Путь трения км х 100

Сравнение износостойкости образца из стали 40Х после карбонитрации (1) и газового азотирования в среде аммиака (2)

Коррозионные испытания (CASS) в соответствии с немецким стандартом DIN 50021 стали SAE 1045

На указанных примерах наглядно видны преимущества карбонитрированного слоя по сравнению с традиционными, наиболее часто применяемыми у нас процессами поверхностной обработки: цементацией, азотированием, хромированием. Кроме того, следует отметить, что при хромировании снижается усталостная прочность при циклическом изгибе основного материала. По сравнению с этим, при карбонитрировании всегда увеличивается усталостная прочность. После карбонитрации с последующим оксидированием повышение усталостной прочности составляет более 50%, в то время как после твердого хромирования усталостная прочность, наоборот, снижается на 20%.

Всё вышесказанное предопределило массовое распространение технологии жидкостного карбонитрирования за рубежом. Какова же ситуация в нашей стране?

Таблица 3. Результат теста на коррозионную устойчивость стали С45 (3% NaCl, 0.1% H2O2)

Исследованные виды поверхностного упрочнения

Потеря в весе в г/м2 через 24 ч

Карбонитрация с последующим оксидированием + полировка + оксидирование (QPQ)

Твердое хромирование: 12 мкм

Двойное хромирование: 20 мкм мягкого хрома, 25 мкм твердого хрома

Тройное покрытие: 37 мкм меди, 45 мкм никеля, 1,3 мкм хрома

Рис. 2. Распределение твердости по толщине слоя сталей 10 (1), 20 (2), 09Г2С (3) после карбонитрации по режимам: 1 – 590 °С, 3 ч, 2 – 570 °С, 2,25 ч, 3 – 570 ° С, 3 ч

Схема комплексной линии термической и химико-термической обработки в расплавах солей

Рис. 3. Распределение твердости по толщине слоя сталей 40Х (1), 40ХН (2), 40ХМФА (3), 30ХГСА (4). Карбонитрация 570 °С, 5 ч

К материалам ряда деталей паровых и гидравлических турбин предъявляются требования высокой коррозионной стойкости в сочетании с износостойкостью.

Так, детали узлов регулирования паровых турбин, работающие при температуре до 565 °С, должны обладать достаточной сопротивляемостью коррозионному и эрозионному воздействию пара, а также удовлетворительной износостойкостью в условиях сухого трения при взаимном перемещении. Детали сервомоторов, работающие в среде конденсата при температуре 70-80 °С, должны иметь высокую коррозионную стойкость и удовлетворительную работоспособность в условиях сухого трения или водяной смазки. Для поверхностного упрочнения этих деталей на заводах применяется технология газового азотирования. Но, как показано ниже, азотированный слой обладает в два раза меньшей стойкостью к износу по сравнению с карбонитрированным.

Испытания карбонитрированного слоя на износостойкость показывают наличие трех стадий. Первая стадия связана с приработкой и износом пористой верхней части карбонитрированного слоя (рис. 1, верхняя часть слоя толщиной 5 мкм) и занимает небольшое место в износе. Вторая характеризуется исключительно низкой скоростью износа карбонитридной фазы. Слой изнашивается без выкрашивания и сколов, что свидетельствует о его высокой пластичности и вязкости. Третья фаза относится к износу гетерофазного слоя. Здесь в массе феррита присутствуют дисперсные карбиды и нитриды железа и легирующих элементов, и такая структура вообще характеризуется высоким сопротивлением износу.

Сравнительные испытания на износостойкость различных видов диффузионных покрытий показывают, например: скорость износа стали 20 после цементации более, чем в 20 раз выше, чем после карбонитрации (см. таблицу) (рис. 4).

Метод химико- термической обработкиТолщина упрочненного слоя, мкмУсловия испытанийСкорость износа, мг/км пути трения
Нагрузка, НСкорость скольжения, м/с
Цементация8005000,50,15/180
80010001,5
Карбонитрация
Карбонитридный слой145000,50,007/5,5
1410001,5
Гетерофазный слой2705000,50,025/150
27010001,5
Примечание. Указана скорость износа при трении со смазкой (числитель) и без смазки (знаменатель)

Основные модули комплексной линии термической и химико-термической обработки в расплавах солей

1.Подготовительный модуль состоит из печи подогрева, а также, в зависимости от требований к линии, камеры обезжиривания и моечной машины.

Основное назначение – подготовить детали непосредственно к термической или химико-термической обработке.

2. Основной модуль в зависимости от требований производства может состоять из линии жидкостной карбонитрации, линии закалки быстрорежущих и штамповых сталей и/или линии жидкостной цементации. Любая из линий основного модуля может быть встроена в существующую линию без закупки дополнительного оборудования.

Читайте также  Печка из камазовских дисков своими руками

Все средства нагрева, входящие в основной модуль, делятся на печи-ванны (нагрев до 950 °С) и электродные печи (нагрев до 1300 °С). Все печи-ванны комплектуются легкосъёмными муфелями, изготовленными из жаропрочной стали или титана, в зависимости от типа процесса и температуры эксплуатации. Рабочее пространство электродной печи футеровано фасонными керамическими блоками. За счет унификации размеров печей-ванн существует возможность оперативной замены вышедшей из строя печи подобной печью. Для удобства управления каждая единица термического оборудования оснащена отдельным шкафом управления .

Все печи-ванны оснащаются бортовыми отсосами для отвода отходящих газов.

3. Модуль охлаждения и промывки. С помощью этого модуля производится охлаждение деталей после термической или химико-термической обработки с необходимой скоростью (охлаждение на воздухе, в масло, в воду), а также проходит очистка деталей от остатков соли в промывочном каскаде.

4. Экологический модуль. Основной частью экологического модуля являются испаритель промышленных стоков и воздушный фильтр, которые позволяют избавится от жидких и газообразных отходов производства. Также экологический модуль комплектуется накопителем промышленных стоков для сбора и хранения загрязненной воды.

Карбонитрация

Компания Термохим предлагает услуги по карбонитрации деталей в Москве — в нашем Инновационном центре упрочнения.

Карбонитрация сталей и чугуна

Сущность метода карбонитрации заключается в том, что детали машин и инструменты, изготовленные из любых марок стали и чугуна, подвергают нагреву в расплаве солей, синтезированных из аммоноуглеродных соединений (меламин, мелон, дициандиамид), при температуре 540-600 o С с выдержками 5-40 мин для режущего инструмента и 1-4 часа для деталей машин и штампового инструмента в зависимости от требуемой толщины упрочненного слоя. Технология используется для повышения износостойкости, усталостной прочности и – в сочетании с оксидированием – для увеличения коррозионной стойкости. Во многих случаях карбонитрация является альтернативой таких процессов, как поверхностная закалка, гальваническое хромирование, цементация и нитроцементация и др.

После карбонитрации на поверхности сталей формируется упрочненный слой, состоящий из нескольких зон. Верхний слой ε– карбонитрид типа Fe3(N,C). Под карбонитридным слоем располагается зона γ’ – фазы типа Fe4(N,C) , под которой находится диффузионная зона (гетерофазный слой). Она состоит из твердого раствора углерода и азота в железе с включениями карбонитридных фаз, твердость которой значительно выше твердости сердцевины. Концентрация азота и углерода при этом существенно снижается.

Технологическая схема процесса оксикарбонитрации

Структура стали 40Х после карбонитрации

Применение карбонитрации для обработки деталей повышает усталостную прочность на 50-80%, резко увеличивает износостойкость по сравнению с цементацией, нитроцементацией, газовым азотированием, обеспечивает минимальные величины деформаций в пределах допуска чертежа. Технология применима для упрочнения деталей из любых марок сталей и чугуна обеспечивает микронную точность (см. Таблицу характеристик упрочненного слоя и твердости сердцевины после карбонитрации). Среди технологий низкотемпературного упрочнения карбонитрация в расплавах солей является наиболее экономичным процессом, т.к. сокращает длительность насыщения до 0,5-6 ч, вместо 10-60 ч при газовом азотировании. При этом практически отсутствует хрупкость карбонитрированного слоя. Процесс карбонитрации, как правило, является окончательной операцией.

Свойства карбонитрированного слоя:

  • толщина 0,01-0,6 мм;
  • поверхностная твердость – 400-1200 HV;
  • повышение износостойкости в 2-11 раз;
  • снижение коэффициента трения в 1,5-5 раз;
  • хрупкость слоя – отсутствует;
  • повышение задиростойкости, включая нержавеющие стали;
  • повышение усталостной прочности в 1,5-2 раза;
  • повышение коррозионной стойкости перлитных сталей в 1,5-2 раза;
  • коробление и поводки длинномерных деталей – практически отсутствуют.

Изменение коэффициента трения стали 12Х18Н10Т в зависимости от удельного давления при контактном трении

Коррозионные испытания штоков автомобильных амортизаторов из стали 40Х с различными видами покрытий

Зависимость износа стали 18ХГТ от пути трения со смазкой

Изменение износостойкости по толщине карбонитрированного слоя чугуна ВЧ50

Распределении твердости по толщине карбонитрированного слоя сталей и чугуна (580oС 3 ч

Изменение коэффициента трения по толщине карбонитрированного слоя чугуна ВЧ50

Структура и фазовый состав стали 25Х2М1Ф после оксикарбонитрации

Коэффициент трения различных видов покрытий на стали типа 40Х

Сравнительные характеристики износостойкости цементированной и карбонитрированной стали 18ХГТ

Усталостные испытания чугуна ВЧ5

Технология НОК-PQ

Для придания коррозионных свойств деталям рекомендуется проводить процесс оксидирования в нитритно — щелочном расплаве при температуре 350-400 o С или водном растворе при 130-150 o С.В результате карбонитрации шероховатость поверхности в среднем ухудшается на 1-1,5 класса, поэтому после оксидирования для восстановления шероховатости поверхности можно использовать различные методы полирования:

  • Притирка доводочной шкуркой зернистостью 360 или мельче;
  • Полирование или тонкое шлифование специальными полировочными кругами в непрерывном процессе подобно бесцентровому шлифованию или шлифованию на токарных автоматах;
  • Скользящее шлифование в вибрационной емкости;
  • Струйная обработка стеклянными шариками диаметром 40-70 мкм.

При проведении процессов шлифования или полирования возможна потеря коррозионных свойств деталей, поэтому рекомендуется повторное оксидирование.Применение операции оксидирования после карбонитрации приводит практически к полному уничтожению цианидов, находящихся на поверхности.

Технологическая схема НОК-PQ — процесса

Технология карбонитрации в сочетании с оксидированием, полированием и повторным оксидированием, получившая название НОК-PQ (в Германии Tenifer – QPQ) придает деталям машин и инструменту несравнимо более высокие эксплуатационные характеристики.

Свойства оксикарбонитридного слоя

Поверхностная шероховатость образцов из стали 45 после карбонитрации (580°С 2 ч) с последующей обработкой по различным вариантам

Она может быть использована взамен гальванического хромирования, например, на деталях гидросистем, запорно- регулирующей арматуры, штампового инструмента и др.

Стоимость обработки договорная и определяется исходя из сложности, размеров,веса и количества деталей. Для того, чтобы узнать цену карбонитрации, необходимо отправить запрос (с четрежом детали) по одному из адресов, указанном на странице КОНТАКТЫ.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]