Что показывает вольтметр, или математика розетки
Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке!
Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений.
Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память.
В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем.
Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему».
Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.
Вступление
Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.
Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В). Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».
Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?
Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.
Как измерять переменное напряжение?
Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.
Цепи постоянного тока — вещь простая. Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I. Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы: .
Или, если учесть, что по закону Ома , то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле .
С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи.
Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке.
Рассмотрим, что означают все эти буковки на рисунке.
Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.
Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.
Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение Uд поговорим чуть ниже.
Напряжение в розетке (или однофазной сети) описывается формулой
где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения.
Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку.
Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле
где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать:
Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период.
Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах.
Рассчитывается усредненная мощность в общем случае по формуле:
А для нашей синусоиды — по гораздо более простой формуле:
Можете сами подставить вместо функцию и взять интеграл, если не верите.
Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.
Что же показывает вольтметр?
Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.
С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!
На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети Uд.
Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.
Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.
Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?
А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.
Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.
Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:
Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».
Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.
Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:
где Uд — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.
Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:
Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.
Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В«:
В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !
Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.
Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.
Фазы, фазы, фазы…
Помимо обычной однофазной осветительной сети
220В все слышали и о трехфазной сети
380В. Что такое 380В? А это межфазное эффективное напряжение.
Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!
Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.
Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.
«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.
Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.
Математически можно записать уравнения всех трех фаз:
«Синяя» фаза:
«Красная» фаза:
«Зеленая» фаза:
Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).
А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).
То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.
Откуда взялось 380В? А вот откуда.
Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:
Uдф — действующее межфазное, оно же линейное напряжение.
Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.
Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.
Амплитуда межфазного напряжения составляет:
Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:
Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!
Надеюсь, теперь понятно что показывает вольтметр переменного тока?
Заключение
Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.
Как измерять напряжение вольтметром
Поскольку между напряжением и током в электрической цепи имеется линейная связь (согласно закону Ома), то ток можно измерить косвенным методом, измерив вольтметром напряжение на сопротивлении эталонного резистора Rэ, силу тока находим по формуле:
Ix = Uэ/ Rэ, где Uэ– напряжение, измеренное вольтметром; Ix– ток, подлежащий определению; Rэ –активное эталонное сопротивление известного номинала.
Однако при измерении малых токов подобная методика может оказаться неприемлемой. В этом случае в измерительных приборах применяют схему входного усилительного каскада с достаточно малым входным сопротивлением.
При измерении тока необходимо выбирать такие приборы, у которых потребляемая мощность значительно меньше мощности, рассеиваемой в исследуемой цепи. Этим и объясняется стремление иметь в амперметрах возможно меньшее сопротивление.
Амперметры магнитоэлектрической системы успешно сочетают высокую точность с малым потреблением мощности и имеют равномерную шкалу. Наиболее точные приборы магнитоэлектрической системы имеют классы точности 0,1; 0,2.
Приборы электродинамической системы предназначены для измерения токов от 10 мА до 100 А. По точности они эквивалентны приборам магнитоэлектрической системы, но потребляют значительно большую мощность и имеют неравномерную шкалу.
Приборы ферродинамической системы применяются для измерения постоянных токов очень редко из-за низкой точности и большой потребляемой мощности.
Приборы электромагнитной системы используются для измерения токов от 10 мА до 200 А. Наиболее точные приборы этой системы имеют классы точности 0,2; 0,5. Их главное достоинство — низкая стоимость.
В тех случаях, когда необходимо измерить ток с высокой точностью, используют потенциометры постоянного тока, цифровые амперметры. Классы точности наиболее точных потенциометров 0,001; 0,002, цифровых амперметров 0,02. Цифровые амперметры измеряют ток до нескольких ампер.
Измерение тока при помощи потенциометра проводят косвенным путем — искомый ток определяют по падению напряжения на образцовом резисторе. Погрешность измерения в этом случае возрастает за счет погрешностей образцового резистора. Преимуществом потенциометров и цифровых приборов является малое потребление мощности, особенно при измерении напряжений.
Измерение больших токов и напряжений.
Шунтирование магнитоэлектрических приборов дает возможность измерять постоянные токи до нескольких тысяч ампер. Отдельные шунты на токи свыше 10 кА не изготовляются из-за их больших размеров и большой стоимости. Поэтому для измерения больших токов часто используют несколько шунтов, соединенных параллельно (рис. 9.3).
Несколько одинаковых шунтов подключают в разрыв шины, а проводники от потенциальных зажимов всех шунтов подводят к одному и тому же прибору. При равенстве сопротивлений R
шунтов и сопротивлений
R
потенциальных проводников наличие переходных сопротивлений в местах присоединения шунтов к шинам
R11, R12,
R21,
R22, R31
и
R32
не отражается на показаниях прибора, а ведет лишь к неравномерному распределению токов между шунтами. Ток
Iy
, протекающий через прибор, определяется только сопротивлениями шунтов, потенциальных проводников и прибора, т. е. точно так же, как и при измерении тока с помощью одного шунта. Практически используют несколько однотипных шунтов.
Но этот способ не дает возможности отделить цепь прибора от цепи измеряемого тока, что не позволяет применять его в цепях высокого напряжения, где требуется заземлять цепь прибора для защиты обслуживающего персонала. При измерении тока в цепях высокого напряжения рекомендуется использовать гальванически развязанную измерительную цепь на основе датчиков Холла.
Измерение тока и напряжения. Вольтметр и амперметр.
Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.
Устройство мультиметра
Современный мультиметр (тестер) представляет собой сложное электронное устройство. Эти измерительные приборы отличаются принципом работы и способом отображения полученных результатов. При этом их устройство и внешний вид целиком и полностью зависят от производителя, имеющего возможность оснастить мультиметры дополнительными возможностями. Например, имеются тестеры, оборудованные встроенными токопроводящими клещами, которые позволяют измерять электрические параметры цепей не разрывая проводов.
Классификация и принцип действия
По конструктивному исполнению мультиметры могут быть стационарными и малогабаритными. Кроме того, исходя из схемотехнического решения они могут быть:
Стационарные мультиметры работают, как правило, от сети централизованного электропитания. Они представляют собой высокоточные электронные устройства и используются для прецизионных измерений в лабораторных или производственных условиях. Работают также в составе информационно-измерительных систем и специализированных промышленных комплексов. В малогабаритных (карманных) тестерах для измерения сопротивления используются встроенные аккумуляторы или сменные элементы электропитания.
В аналоговых мультиметрах результат измерения отображается отклонением стрелки на градуированной шкале, а в цифровых – на светодиодном табло или жидкокристаллическом экране. Могут встретиться и оригинальные модели, оснащенные одновременно стрелочным индикатором и цифровым экраном.
Электрическая схема стрелочных мультиметров аналогового типа отличается простотой и представляет собой набор шунтирующих прецизионных резисторов большого и малого номинала. Чтобы с помощью таких тестеров можно было измерять параметры электрических цепей переменного тока, в схему вводят выпрямительные диоды. Это связано с тем, что магнитоэлектрическая система стрелочного микроамперметра работает только на постоянном токе.
Электрические схемы цифровых мультиметров значительно сложнее и содержат в своем составе такие узлы:
- операционный усилитель;
- аттенюатор;
- аналогово-цифровой преобразователь;
- высокоточный выпрямитель;
- механический или электронный коммутатор.
Блок-схема является базовой для всех цифровых мультиметров и позволяет осуществлять измерение параметров электрических цепей постоянного и переменного тока с высокой точностью.
Принцип действия аналоговых тестеров основан на том, что измерению предшествует преобразование всех входящих сигналов в силу тока, которая затем и измеряется. В отличие от них цифровые мультиметры все входящие сигналы предварительно преобразуют в напряжение.
Измерение тока.
И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:
Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:
Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи
Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:
Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.
Техника безопасности
Проверить силу тока просто. Достаточно подключить мультиметр, в соответствии с правилами эксплуатации. Необходимо соблюдение инструкции, чтобы не нарушать технику безопасности:
- Подключение прибора проводят в обесточенном состоянии.
- Предварительно осматривают изоляцию на проводах. При длительном сроке службы, нарушается ее целостность. Есть вероятность получить удар тока.
- Мерить амперы нужно только в резиновых перчатках.
- Запрещены замеры в помещении, где повышенная влажность. У влаги высокая электрическая проводимость. Риск поражения возрастает в несколько раз.
- Того, кто пострадал от удара током, независимо от его мощности, нужно срочно доставить в ближайший медицинский пункт. Запрещено работать с электричеством в одиночестве. При внештатной ситуации напарник может вызвать скорую.
- Категорически запрещено работать с аппаратами, которые искрят, сломаны, когда подключены к аналоговым источникам питания, например, к аккумулятору, батарейкам или блоку питания. Все это может привести к удару током. Не слишком сильному, но способному нанести вред нервной системе и сердцу человека.
- Запрещено пользоваться мультиметром после удара, точно также, как и склеивать его скотчем, изоляционной лентой. Лучше воспользоваться новым устройством или доверить его мастеру для ремонта и тестирования на предмет пригодности.
Вам это будет интересно Все об проводах для сварки
После использования мультиметрового прибора, кабели, которые были разрезаны соединяют при обесточенной цепи.
Повреждения исправляют изолентой
Мультиметр — это прибор, без которого просто невозможно обойтись в бытовых условиях и других областях. Имея даже самые минимальные знания по его работе, можно починить приборы. Зная показания, несложно определить их непригодность.
Измерение напряжения.
Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:
Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:
Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.
Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:
Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример
Как измерять напряжение вольтметром
Вольтметр – это измерительный прибор, который предназначен для измерения напряжения постоянного или переменного тока в электрических цепях.
Вольтметр подключается параллельно к выводам источника напряжения с помощью выносных щупов. По способу отображения результатов измерений вольтметры бывают стрелочные и цифровые.
Величина напряжения измеряется в Вольтах, обозначается на приборах буквой В (в русском языке) или латинской буквой V (международное обозначение).
На электрических схемах вольтметр обозначается латинской буквой V, обведенной окружностью, как показано на фотографии.
Напряжение тока бывает постоянное и переменное. Если напряжение источника тока переменное, то перед значением ставится знак «
«, если постоянного, то знак «–«.
Например, переменное напряжение бытовой сети 220 Вольт кратко обозначается так:
220 V. На батарейках и аккумуляторах при их маркировке знак «–» часто опускается, просто нанесено число. Напряжение бортовой сети автомобиля или аккумулятора обозначается так: 12 В или 12 V, а батарейки для фонарика или фотоаппарата: 1,5 В или 1,5 V. На корпусе в обязательном порядке наносится маркировка возле положительного вывода в виде знака «+«.
Полярность переменного напряжения изменяется во времени. Например, напряжение в бытовой электропроводке изменяет полярность 50 раз в секунду (частота изменения измеряется в Герцах, один Герц равен одному изменению полярности напряжения в одну секунду).
Полярность постоянного напряжения во времени не меняется. Поэтому для измерения напряжения переменного и постоянного тока требуются разные измерительные приборы.
Существуют универсальные вольтметры, с помощью которых можно измерять как переменное, так и постоянное напряжение без переключения режимов работы, например, вольтметр типа Э533.
Как измерять напряжение в электропроводке бытовой сети
Внимание! При измерении напряжения величиной выше 36 В недопустимо прикосновение к оголенным провода,так как это может привести к поражению электрическим током!
Согласно требованиям ГОСТ 13109-97 действующее значение напряжения в электрической сети должно быть 220 В ±10%, то есть может изменяться в пределах от 198 В до 242 В. Если в квартире стали тускло гореть лампочки или часто перегорать, стала нестабильно работать бытовая техника, то для принятия мер, требуется сначала измерять значение напряжения в электропроводке.
Приступая к измерениям, необходимо подготовить прибор: – проверить надежность изоляции проводников с наконечниками и щупов; – установить переключатель пределов измерений в положение измерения переменного напряжения не менее 250 В;
– вставить разъемы проводников в гнезда прибора ориентируясь по надписям возле них;
– включить измерительный прибор (если необходимо).
Как видно на картинке, в тестере выбран предел измерения переменного напряжения 300 В, а в мультиметре 700 В. Во многих моделях тестеров, нужно установить в требуемое положение сразу несколько переключателей. Род тока (
или –), вид измерений (В, А или Омы) и еще вставить концы щупов в нужные гнезда.
В мультиметре конец щупа черного цвета вставлен в гнездо COM (общее для всех измерений), а красного в V, общий для изменения постоянного и переменного напряжения, тока, сопротивления и частоты. Гнездо, обозначенное ma , используются для измерения малых токов, 10 А при измерении тока достигающего 10 А.
Внимание! Измерение напряжения, когда штекер вставлен в гнездо 10 А выведет прибор из строя. В лучшем случае перегорит вставленный внутри прибора предохранитель, в худшем придется покупать новый мультиметр. Особенно часто допускают ошибки при использовании приборов для измерения сопротивления, и, забыв переключить режим, измеряют напряжение. Встречал не один десяток таких неисправных приборов, с горелыми резисторами внутри.
После проведения всех подготовительных работ можно приступать к измерению. Если Вы включили мультиметр, а на индикаторе не появились цифры, значит, либо в прибор не установлена батарейка или она уже выработала свой ресурс. Обычно в мультиметрах применяется батарейка типа «Крона», напряжением 9 В, срок годности которой один год. Поэтому, даже если прибор не использовался долгое время, батарейка может быть неработоспособна. При эксплуатации мультиметра в стационарных условиях целесообразно вместо кроны использовать адаптер
Вставляете концы щупов в розетку или прикасаетесь ними к проводам электропроводки.
Мультиметр сразу покажет напряжение в сети, а вот в стрелочном тестере показания надо еще уметь прочитать. На первый взгляд, кажется, что сложно, так как много шкал. Но если присмотреться, то становится ясно, по какой шкале считывать показания прибора. На рассматриваемом приборе типа ТЛ-4 (который безотказно мне служит более 40 лет!) есть 5 шкал.
Верхняя шкала используется для снятия показаний, когда переключатель стоит в положениях кратных 1 (0,1, 1, 10, 100, 1000). Шкала, расположенная чуть ниже, кратных 3 (0,3, 3, 30, 300). При измерениях напряжения переменного тока величиной 1 В и 3 В, нанесены еще 2 дополнительные шкалы. Для измерения сопротивления имеется отдельная шкала. Аналогичную градуировку имеют все тестеры, но кратность может быть любая.
Так как предел измерений был выставлен
300 В, значит, отсчет нужно производить по второй шкале с пределом 3, умножив показания на 100. Цена маленького деления равна 0,1, следовательно, получается 2,3 + стрелка стоит посередине между штрихами, значит, берем значение показаний 2,35×100=235 В.
Получилось, что измеренное значение напряжения составляет 235 В, что в пределах допустимого. Если в процессе измерений наблюдается постоянное изменение значения цифр младшего разряда, а у тестера стрелка постоянно колеблется, значит, имеются плохие контакты в соединениях электропроводки и необходимо провести ее ревизию.
Как измерять напряжение батарейки
аккумулятора или блока питания
Так как напряжение источников постоянного тока обычно не превышает 24 В, то прикосновение к клеммам и оголенным проводам не опасно для человека и особых мер безопасности соблюдать не требуется.
Для того, чтобы оценить годность батарейки, аккумулятора или исправность блока питания требуется измерять напряжение на их выводах. Выводы у круглых батареек находятся по торцам цилиндрического корпуса, положительный вывод обозначен знаком «+».
Измерение напряжения постоянного тока практически мало чем отличается от измерения переменного. Нужно просто переключить прибор в соответствующий режим измерения и соблюдать полярность подключения.
Величина напряжения, которое создает батарейка обычно нанесена на ее корпусе. Но даже если результат измерений показал достаточное напряжение, это еще не говорит о том, что батарейка хорошая, так как измерена ЭДС (электро движущая сила), а не емкость батарейки, от которой зависит продолжительность работы изделия, в которое она будет установлена.
Для более точной оценки емкости батарейки нужно напряжение измерять, подсоединив к ее полюсам нагрузку. В качестве нагрузки для батарейки 1,5 В хорошо подходит лампочка накаливания для фонарика, рассчитанная на напряжение 1,5 В. Для удобства работы нужно припаять к ее цоколю проводники.
Если напряжение под нагрузкой снижается менее, чем на 15%, то батарейка или аккумулятор вполне пригодны для эксплуатации. Если нет измерительного прибора, то можно судить о годности к дальнейшей эксплуатации батарейки по яркости свечения лампочки. Но такая проверка не может гарантировать продолжительность работы батарейки в устройстве. Она лишь свидетельствует, что в настоящее время батарейка еще пригодна к эксплуатации.