Как проверить динистор?
Столкнувшись с самостоятельным ремонтом лампочек экономок, симисторных регуляторов мощности или диммеров, многие, не найдя реальной поломки, начинают искать причину в такой неприметной детали, как динистор. Необходимо отметить, что динистор выходит из строя крайне редко, а для его проверки необходимо немного повозится. Для особо продвинутых энтузиастов мы сегодня наглядно продемонстрируем, как проверить динистор.
Как проверить динистор?
Работа динистора основана на пробое. В исходном положении динистор не способен проводить через себя ток, пока на его выводы не подадут напряжение пробоя. После этого происходит лавинный пробой динистора и он начинает через себя пропускать ток, достаточный для управления симистором или тиристором.
Многие задают вопрос, как проверить динистор мультиметром или тестером? На него нужно дать однозначный и четкий ответ. С помощью мультиметра динистор можно проверить только на пробой; если динистор в обрыве, проверка динистора мультиметром результатов не даст.
Схема проверки динистора
Для реальной проверки на работоспособность нужно собрать схему проверки динисторов.
Она включает в себя совсем немного компонентов:
- блок питания с возможностью регулировки напряжения в пределах 30-40 В.
- резистор 10 кОм.
- светодиод.
- подопытный образец — симметричный динистор DB3.
Очень редко в радиолюбителей есть блоки питания с диапазоном регулировки до 40 В, для этих целей можно соединить последовательно два или даже три регулируемых блока питания.
Проверка динистора DB3 начинается со сборки схемы. Устанавливаем выходное напряжение порядка 30 В и постепенно подымаем его немного выше, до момента загорания светодиода. Если светодиод загорелся – динистор уже открыт. При уменьшении напряжения светодиод потухнет – динистор закрыт.
Как видим, светодиод начинает тускло загораться при подаче на схему напряжения 35,4 В. С учетом, что 2,4 В уходит на светодиод, напряжение пробоя у подопытного динистора DB3 составляет порядка 33 В. Из паспортных данных значение напряжение пробоя динистора DB3 может колебаться в пределах от 28 до 36 В.
Как видим, проверка динистора DB3 занимает всего лишь несколько минут. Если необходимо проверить несимметричный динистор, необходимо четко соблюдать полярность его включения в этой схеме.
Динисторы – принцип работы, как проверить, технические характеристики
Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.
Содержание статьи
Как графически обозначается динистор на схеме
Четкого стандарта, регламентирующего изображение этого элемента на схеме, не существует. Самый распространенный вариант – изображение диода + дополнительная перпендикулярная черта. На зарубежных описаниях этот элемент может обозначаться словами trigger diode, буквами VD, VS, V, D.
Условное графическое изображение симметричных динисторов имеет несколько вариантов.
Маркировка, наносимая на корпус динистора, состоит из букв и цифр. Наиболее популярны устройства российского производства КН102 (А…И). Первая буква в обозначении характеризует материал, из которого изготовлено устройство. К – кремний. Число из трех цифр обозначает номер разработки. Буквы, стоящие в конце маркировки, являются буквенными кодами напряжения включения.
Таблица наиболее популярных марок динисторов
Особенности устройства полупроводникового неуправляемого тиристора
Структура динистора четырехслойная с тремя p-n-переходами. Эмиттерные переходы прямого направления – p-n1 и p-n3, переход p-n2 – коллекторный, обратной направленности, обладает высоким сопротивлением. Выводы:
- анод – выводится из p-области;
- катод – выводится из n-области.
Отличие динистора от диода – количество p-n-переходов (у диода один p-n-переход), от обычного тиристора – отсутствие третьего, управляющего, входа.
Основные плюсы trigger diode:
- обеспечение несущественной потери мощности;
- возможность эксплуатации в широком температурном интервале – -40…+125°C;
- возможность получения высокого выходного напряжения.
Минус – отсутствие возможности управлять работой этого устройства.
Виды динисторов
В зависимости от конструктивных особенностей различают следующие виды этих устройств:
- Однополярные. Функционируют только при положительном смещении. Если уровень максимально допустимого обратного напряжения будет превышен, элемент сгорит.
- Симметричные. Имеют равнозначные выводы, могут работать при прямом и обратном смещениях. В современной электронике широко применяются реверсивно-включаемые мощные динисторы (РВД). Эти элементы с реверсивно-импульсивными свойствами способны осуществить коммутацию токов до 500 кА в микросекундном или субмиллисекундном диапазонах. Они используются для коммутации импульсных токов в твердотельных ключах в схемах электропитания силовых агрегатов.
Основные характеристики динисторов
При выборе подходящего динистора учитывают следующие параметры:
- Разность потенциалов в открытом состоянии, измеряется в вольтах. Указывается применительно к величине тока открытия.
- Наименьшая величина тока в открытом состоянии, единица измерения – миллиамперы. Эта характеристика зависит от температуры устройства. С ее повышением значение минимального тока уменьшается.
- Время переключения – временной промежуток, составляющий микросекунды, в течение которого триггер-диод переходит из одного устойчивого состояния в другое.
- Ток запертого состояния. Зависит от значения обратного напряжения. В общем случае его величина не превышает 500 мкА.
- Емкость. Измеряется в пикофарадах, характеризует общую паразитную емкость устройства. Если этот показатель высокий, то элемент в высокочастотных цепях не используется.
Схема работы динистора
Основной принцип работы динистора: пропускание тока начинается при достижении определенного значения напряжения, которое является постоянным и не может быть изменено, поскольку триггер-диоды является неуправляемым.
Наглядное представление о том, как работает динистор, дает вольтамперная характеристика (ВАХ). На ВАХ симметричного элемента видно, что он будет функционировать при любом направлении прикладываемого напряжении. Верхняя и нижняя ветви центрально симметричны. Такую деталь можно включать в схему без учета полярности.
На графике изображены 3 возможных рабочих режима:
- Красный участок – закрытое состояние, при котором значение текущего напряжения ниже напряжения включения. Ток через триггер-диод не проходит.
- Синий – характеризует момент включения, когда напряжение на выводах достигает напряжения включения и элемент включается.
- Зеленый – открытое состояние, при котором характеристики элемента стабилизированы. В характеристиках на триггер-диод указывается наибольшее значение тока, который может через него протекать.
Несимметричные dinistor можно включать в схему только с соблюдением полярности. При обратном подсоединении элемент будет закрыт при напряжениях, не превышающих допустимое значение, при их превышении деталь сгорит.
По схеме функционирования триггер-диод похож на классический диод, но есть существенное отличие. Если напряжение открытия для диода очень мало и составляет десятки и сотни милливольт, то для динистора напряжение включения составляет несколько десятков вольт. Для закрытия устройства ток, проходящий через него, необходимо понизить до значения, которое меньше величины тока удержания, или разомкнуть цепь электропитания.
Области применения динисторов
Рабочие характеристики этого элемента позволяют его использовать в следующих в следующих схемах:
- Тиристорный регулятор мощности и импульсного генератора. Динистор в схеме нужен для генерации импульса, открывающего тиристор.
- Высокочастотный преобразователь, применяемый для питания люминесцентных ламп. Для этой цели используются симметричные устройства. Монтаж может быть обычным или поверхностным.
- Схемы управления плавного пуска двигателей.
Как проверить работоспособность динистора
Этот элемент выходит строя очень редко. С использованием мультиметра динистор из-за его технических особенностей проверить невозможно, поэтому для проведения детальной проверки собирают несложную тестовую схему.
В проверочную схему входят:
Для сборки этой схемы понадобятся: резистор сопротивлением 10 кОм, светодиод для светоиндикации, проверяемый элемент, лабораторный источник питания с возможностью регулировать постоянное напряжение в интервале 30-40 В. Если имеются только маломощные ИП c регулировкой, то их включают в цепь последовательным соединением.
- Задают исходное напряжение 30 В, которое медленно повышают до загорания светодиода, означающего открытие элемента.
- Отмечают напряжение, при котором загорелся светодиодный индикатор, и вычитают разность потенциалов, расходуемую на светодиод.
- По справочнику проверяют нормативный интервал напряжений включений для проверяемого динистора. Если полученное в результате тестирования значение входит в этот диапазон, значит, устройство полностью исправно.
При включении однонаправленного динистора в тестовую схему необходимо соблюдать полярность.
Динистор. Описание, принцип работы, свойства и характеристики.
Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.
В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.
Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:
Как проверить динистор DB3
Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.
Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.
Источник питания
Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.
Этапы проверки
Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.
Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.
Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.
Эквивалентная замена лямбда-диодов
Совершенно особым видом ВАХ обладают полупроводниковые приборы типа лямбда-диодов, туннельных диодов. На вольт-амперных характеристиках этих приборов имеется N-об-разный участок.
Лямбда-диоды и туннельные диоды могут быть использованы для генерации и усиления электрических сигналов. На рис. 8 и рис. 9 показаны схемы, имитирующие лямбда-ди-од [РТЕ 9/87-35].
Практически в генераторах чаще используют схему, представленную на рис. 9 [ПТЭ 5/77-96]. Если между стоками полевых транзисторов включить управляемый резистор (потенциометр) либо транзистор (полевой или биполярный), то видом вольт-амперной характеристики такого «лямбда-диода» можно управлять в широких пределах: регулировать частоту генерации, модулировать колебания высокой частоты и т.д.
Рис. 8. Аналог лямбда-диода.
Рис. 9. Аналог лямбда-диода.
Проверка динистора с помощью осциллографа
Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.
В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжение пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.
Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:
- C = 0,015мкф — 0,275 мс.
- С = 0,1мкф — 3 мс.
- C = 0,22 мкф — 6 мс.
- С = 0,33 мкф — 8,4 мс.
- С = 0,56 мкф — 15 мс.
Эквивалент инжекционно-полевого транзистора
Инжекционно-полевой транзистор представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д.
Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис. 5, 6). На основе дискретных элементов может быть смоделирована не только полупроводниковая структура.
Рис. 5. Аналог инжекционно-полевого транзистора п-структуры.
Рис. 6. Аналог инжекционно-полевого транзистора р-структуры.
Причины поломки диммеров
Чаще всего причиной поломки может быть превышение максимально допустимой нагрузки либо короткое замыкание в нагрузке. Превышение нагрузки бывает, когда например, любители хорошего освещения вкрутят слишком мощные лампы в люстры. Либо через диммер подключают несколько светильников, в сумме потребляющих слишком большую мощность.
К слову, при выборе диммера следует мощность выбирать с запасом 30…50%. Как повысить мощность диммера, будет рассказано и показано в этой статье.
Короткое замыкание возможно не только из-за неисправной проводки. Бывает, когда лампочки перегорают, в них происходит короткое замыкание (КЗ), в природу которого углубляться не будем.
Кроме того, в момент включения лампы накаливания через неё течёт ток, в несколько раз превышающий рабочий. Подробнее – в статье про сопротивление лампы накаливания.
Неисправности диммеров на симисторе
В результате КЗ и перегрузки, как правило, выходит из строя симистор. Это основная неисправность, она встречается в 90% случаев поломки.
Симистор – это главный элемент. Его отличительные особенности – три вывода и к корпусу прикручен радиатор. Наиболее часто встречаются модели ВТ137, BT138, BT139.
Неисправность симистора можно выявить мультиметром. Если прозвонить в режиме омметра сопротивление между выводами А1 и А2 (или Т1 и Т2, первый и второй вывод), будет от нуля до несколько ом. Вывод – симистор однозначно сгорел.
Бывает другой случай – симистор звонится нормально (бесконечное сопротивление), а диммер однако не работает (лампа не горит во всех положениях регулятора). Тут поможет только проверка, т.е. включение в реальную схему.
О замене симистора будет подробно сказано ниже.
Креме неисправного симистора, встречаются другие неисправности диммера:
- Выгорают силовые дорожки печатной платы. Это – следствие основной неисправности. Дорожки придётся восстанавливать перемычками.
- Нарушается механическая целостность регулятора (потенциометра, или переменного резистора). От частого и интенсивного использования, тут пояснений не надо.
- В диммерах, в которых есть предохранитель, перед ремонтом надо в первую очередь проверить его. Часто производитель прикладывает запасной, который хранится там же, в диммере, где и рабочий. Разумное решение. Был бы он в отдельном кулечке – обязательно бы потерялся.
- Механическое нарушение контактов и пайки печатной платы. В первую очередь – пайка контактов, куда прикручиваются провода. Так же бывает, что электронные элементы просто плохо пропаяны производителем.
- Неисправности отдельных элементов. В первую очередь – динистор, затем резисторы и конденсаторы.
Порядок ремонта диммера
Теперь приведу пример, как заменить симистор своими руками, применяя дрель, паяльник, и обычную зубочистку.
Симистор можно заменить, открутив радиатор и выпаяв симистор из платы. Но радиатор сейчас приклёпывают. Заклёпка гораздо технологичнее и дешевле в массовом производстве.
Поэтому берём в руки дрель со сверлом диаметром 3,5…5,5 мм.
1 Высверливаем заклепку радиатора
Стрелкой показано направление сверла.
2 Снимаем радиатор с симистора
Радиатор снят, теперь надо аккуратно выпаять плохой симистор, минимально повредив плату. Рекомендуемая мощность паяльника – 25 или 40 Вт.
3 Выпаиваем симистор из платы. Обозначены выводы симистора – Т1, Т2, Gate.
Плюс к паяльнику, нужен опыт и сноровка.
Паяльником мощностью 60 Ватт и более можно запросто повредить плату.
Далее – подготавливаем место для нового симистора, используем для этого деревянную зубочистку:
4 Подготавливаем отверстия для нового симистора
5 Плата подготовлена
6 Место под новый симистор
Площадки слиплись, но это пока не важно.
А вот и друзья-симисторы, рядом динистор DB3:
7 Новые симисторы и динистор DB3
Симисторы (BT139, BT138, BT137) на фото все на напряжение 800 Вольт, максимальный рабочий ток соответственно 16, 12, и 8 Ампер.
Даташит можно будет скачать в конце статьи.
Теперь в эти сквозные отверстия вставляем новую деталь:
8 Симистор запаян
9 Обрезаем ноги (выводы))
Перемычка неудачная, надо было использовать проводок потоньше…
Внимательно проверяем пайку, чтобы не было замыкания между контактными площадками.
Дальше – монтируем радиатор. В домашних условиях дешевле и технологичнее использовать Винт, шайбу и гайку М3.
10 Осталось прикрутить радиатор
Теперь остаётся проверить работу в реальной схеме включения. Напоминаю, диммер включается точно так же, как обычный выключатель:
Включение лампочки через регулятор яркости.
Для схемы проверки использую лампочку любой мощности в патроне, провод со штепселем, и клеммник Ваго 222.
Область применения
Предназначение динисторов – запуск. Используются в тиристорах регуляторов мощности, в электронных преобразователях напряжения, в тепловых контролях.
Благодаря тому, что динистор обладает рядом особых свойств, и в тоже время является бюджетным вариантом, данный вид полупроводников получил широкое распространение во многих сферах.
Применяется в устройстве:
- Преобразователей напряжения люминесцентных ламп, неоновых ламп, энергосберегающих ламп;
- В электронных устройствах, которые осуществляют запуск и поддержку работы разрядных ламп;
- Нашел своё применение в схемах радиоконструкций, некоторых старых моделях раций, радиомикрофонов;
- Используется в схемах управления плавным спуском двигателей;
- Обогревателей;
Это Интересно! Во времена активного пользования и широкого распространения стационарных телефонных аппаратов некоторые умельцы устанавливали динисторы с целью пресечения попыток прослушки, если имелось 2 и более телефона на одной линии.
Динистор DB3. Характеристики, проверка, аналог, datasheet
Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.
В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.
Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:
Цоколевка динистора DB3
Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.
Характеристики динистора DB3
Аналоги динистора DB3
- HT-32
- STB120NF10T4
- STB80NF10T4
- BAT54
Как проверить динистор DB3
Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.
Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.
Источник питания
Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.
Этапы проверки
Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.
Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.
Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.
Проверка динистора с помощью осциллографа
Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.
В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.
Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая: