Как подключить трехфазный двигатель через конденсаторы

Как подключить трехфазный двигатель через конденсаторы

Как подключить трехфазный двигатель через конденсаторы

Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.

  • Главная
  • Каталог самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Обратная связь
  • Лучшие самоделки
  • Самоделки для дачи
  • Самодельные приспособления
  • Автосамоделки, для гаража
  • Электронные самоделки
  • Самоделки для дома и быта
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Самоделки для рыбалки
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для компьютера
  • Самодельные супергаджеты
  • Другие самоделки
  • Материалы партнеров

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Довольно часто в быту приходится использовать трехфазные электродвигатели для своих самоделок (наждаки, циркулярные пилы и т.п.) в однофазной сети 220 вольт. Как правило, для запуска трёхфазника в домашней сети применяют давно известный способ — одну из обмоток подключают через фазосдвигающий конденсатор. Но у этого решения есть серьёзный недостаток.

Во-первых, огромные размеры бумажных конденсаторов (особенно если используются пусковые ёмкости) иногда сопоставимы с размером самого электродвигателя. Во-вторых, в настоящее время достать такие конденсаторы непросто. А можно ли использовать трёхфазный электродвигатель в однофазной сети вообще без конденсаторов? Оказывается можно!

Хочу поделиться найденной и проверенной на практике альтернативной заменой конденсаторов тиристорным ключом. Используя тиристорный ключ, можно запустить трёхфазный электродвигатель без использования конденсаторов. Схема ключа проста и не требует настройки. Готовый и помещённый в подходящий корпус тиристорный ключ занимает место не более пачки сигарет.

Принципиальная схема устройства:

Устройство работает следующим образом: при максимальном сопротивлении на R7 ключ закрыт и сдвиг фаз наибольший, соответственно пусковой момент максимальный. По мере выхода электродвигателя на максимальные обороты сопротивление устанавливают такое, чтобы сдвиг фаз был оптимальным для работы электродвигателя. Тиристорный ключ позволяет отказаться от пусковых и рабочих конденсаторов, а это при мощности электродвигателя от 2 кВт и выше даёт огромные преимущества.

Все резисторы типа МЛТ

VT1, VT2 – любые из этой серии

Д231 и КУ 202 любые на ток 10А и напряжение 300 вольт

Всю схему можно собрать на печатной плате. В моём случае мощность электродвигателя была 600 Вт, поэтому тиристоры не стал устанавливать на радиаторы (нагрева вообще не было).

Моя изменения при которых схема стабильно заработала:

Транзисторы VT1 и VT2 заменил на BC547 и BC557 соответственно. R6 — 22 кОм, R3 — 10 кОм, R4 — 22 кОм, R2 — 47 кОм, R1 — 56 кОм, R7 — 20 кОм. VD3, VD4 — 1N4007, VD1, VD2 — Д233ВП, VD5 — Д814Д.

Как включить трехфазный электродвигатель в однофазную сеть без перемотки

Трехфазный асинхронный двигатель может работать от однофазной сети как однофазный с пусковым элементом или как однофазный конденсаторный с постоянно включенной рабочей емкостью. Применение двигателя в качестве конденсаторного предпочтительнее.

В этом случае при пуске двигателя в ход для образования вращающегося магнитного поля (в общем случае эллиптического) используются обмотки всех трех фаз, в которых с помощью активного сопротивления R, индуктивности L или емкости С создается трехфазная несимметричная система токов.

По окончании пуска в большинстве случаев одна из фаз вместе со вспомогательным сопротивлением (R, L или С) отключается и двигатель переводится в однофазный режим, при котором обмотки статора создают не вращающееся, а пульсирующее магнитное поле.

Трехфазный асинхронный двигатель

Использование трехфазных двигателей для работы от однофазной сети

На рисунках 1 и 2 представлены различные схемы пуска в ход трехфазных асинхронных двигателей при их работе от однофазной сети.

Если принять за 100 % мощность трехфазного двигателя, обозначенную на его щитке, то при однофазном включении двигатель может развить 50-70 % этой мощности, а при использовании в качестве конденсаторного — 70-85 % и более. Еще одно преимущество конденсаторного двигателя заключается в том, что отсутствует специальное пусковое устройство, которое необходимо при однофазной схеме для отключения пусковой обмотки после разгона двигателя.

Схему включения на рисунках надо выбирать с учетом напряжения сети и номинального напряжения двигателя. Например, при трех выведенных концах обмотки статора (рис. 1) двигатель может быть использован в сети, напряжение которой равно номинальному напряжению двигателя.

При шести выводных концах обмотки двигатель имеет два номинальных напряжения: 127/220 В, 220/380 В. Если напряжение сети равно большему номинальному напряжению двигателя, т.е. Uc = 220 В при номинальном напряжении 127/220 В или UC = 380 В при номинальном напряжении 220/380 В и т.д., то надо пользоваться схемами, приведенными на рис. 1, а, б. При напряжении сети, равном меньшему номинальному напряжению двигателя, следует применять схему, показанную на рис. 1, в. В этом случае при однофазном включении значительно уменьшается мощность двигателя, поэтому целесообразно применять схемы с рабочей емкостью.

Подбор конденсаторов при подключении трехфазных двигателей к сети

Расчет пусковых элементов при использовании трехфазных двигателей в качестве однофазных требует знания параметров схемы замещения двигателя, причем, будучи сложным, он в то же время не позволяет для большинства схем достаточно точно определить искомые величины, поэтому для двигателей малой мощности на практике чаще всего величину пусковых элементов определяют экспериментально. Критерием правильности подбора пусковых элементов служат величины пусковых момента и тока.

Рабочая емкость СР(мкФ) для каждой схемы должна иметь определенное значение и может быть подсчитана, исходя из напряжения однофазной сети Uc и номинального тока Iф в фазе трехфазного двигателя: Ср=kIф/Uc где k — коэффициент, зависящий от схемы включения. При частоте 50 Гц для схем по рис. 1, б и 2, б можно принять k=2800; для схемы по рис. 1, в — k=4800; для схемы по рис. 2, в — k=1600.

Напряжение на конденсаторе Uk также зависит от схемы включения и напряжения сети. Для схем по рис. 1, б, в оно может быть принято равным напряжению сети; для схемы по рис. 2, б — Uk = 1,15Uc; для схемы по рис. 2, e-Uk=2Uc.

Номинальное напряжение конденсатора должно быть равно или несколько больше расчетного значения.

Необходимо помнить, что конденсаторы после отключения длительное время сохраняют напряжение на своих зажимах и создают при прикосновении к ним опасность поражения человека электрическим током. Опасность поражения тем выше, чем больше емкость и выше напряжение на включенном в схему конденсаторе. При ремонте или отладке двигателя необходимо после каждого отключения конденсатор разрядить. Для защиты от случайного прикосновения в процессе эксплуатации двигателя конденсаторы должны быть жестко закреплены и ограждены.

Пусковое сопротивление Rn определяют опытным путем, используя регулируемое сопротивление (реостат).

Если необходимо получить увеличенный момент при пуске двигателя, то параллельно рабочему конденсатору включают пусковой. Его емкость обычно подсчитывают по формуле Сп=(от 2,5 до 3)Ср, где Ср — емкость рабочего конденсатора. Пусковой момент при этом получается близким к номинальному моменту трехфазного двигателя.

Подключение трёхфазного двигателя к однофазной сети

Массовым применением зарекомендовали себя асинхронные трёхфазные электродвигатели переменного тока 380 вольт. Благодаря надёжной работе и минимальным требованиям по техническому обслуживанию двигатели нашли применение в быту при изменении стандартной схемы включения. Осуществить подключение трёхфазного двигателя к однофазной сети могут только те, кто в совершенстве владеет знаниями в области электротехники и электромеханики.

Асинхронные трёхфазные двигатели

Асинхронные электродвигатели механически состоят из двух частей: статора и ротора. Статор является неподвижной частью, которая состоит из сердечника набранного из электротехнической стали, обладающей высокими магнитными свойствами.

Сердечник набирается из отдельных листов для предотвращения возникновения вихревых токов Фуко, которые могут возникнуть в переменном магнитном поле проводника.

Каждая из пластин отдельно изолируется специальным лаком. Пазы сердечника оснащаются медным эмалированным проводом, состоящим из трёх обмоток, которые располагаются, одна от другой с угловым расстоянием равным 120 градусов.

Свободно вращающая подвижная часть, называемая, ротор помещается внутрь сердечника на расстояние друг от друга не менее 0,5 мм до 3 мм.

Стандартное подключение

Подключение трёхфазного двигателя к трёхфазной сети осуществляется по схеме соединения типа «Звезда». При таком соединении к каждой из фаз по отдельности приложено напряжение 220 В относительно центральной общей точки «Нуля», а между каждой из фаз величина линейного напряжения составит 380 В.

Преимущество такого способа подключения:

  • Малые пусковые токи.
  • Мягкий старт.

Второй способ подключения «Треугольник». Соединение обмоток подключено последовательно, по кругу. Начало первой обмотки (А) соединяют с концом третьей ©, а конец первой (А) соединён с началом второй (В), конец второй обмотки (В) соединён с началом третьей ©. Основным недостатком такого подключения в трёхфазной сети 380 В, является:

  • Повышенный пусковой ток превышающий номинальный в 7—8 раз, вызывающий аварийную перегрузку сети.
  • Повышенный протекающий ток в рабочем состоянии.

При подключении треугольником мощность электродвигателя становится выше, чем при соединении звездой. В автоматизированных системах запуск и разгон двигателя проводят в режиме звезды, доводя скорость до номинальных оборотов, после чего производится автопереход в режим треугольника.

Нестандартная схема

Подключить трехфазный двигатель на 220 вольт можно путём внесения изменений в стандартную схему включения, что уменьшит его паспортную мощность на 30%. Подключение электродвигателя 380 В на 220 В через конденсатор существенно отразится на его характеристиках при практическом применении конденсаторов, увеличивая ёмкостный сдвиг фаз, при простой реализации и меньших потерях.

Для сдвига фазы конденсатор можно подключить параллельно к одной из трёх фаз двигателя. Включение обмоток по схеме треугольника выдаёт полезной мощности больше, чем включение «Звезда». Для более мощных двигателей схема подключения трёхфазного электродвигателя на 220 В предусматривает применение в своих цепях пускового конденсатора, включенного на короткий срок действия. После старта и набора оборотов пусковой конденсатор отключается, а рабочий остаётся подключенным.

Пусковой конденсатор в схеме подключен параллельно основному. Запустить электродвигатель можно при помощи пусковой кнопки. Ёмкость пускового конденсатора в 2—3 раза выше, чем у рабочего и заряд на нём может оставаться длительное время. В целях безопасности в схему вводят резисторы с сопротивлением порядка 300 кОм и не выше 1 МОм, мощностью 2—3 Вт, необходимые для разряда конденсаторов.

Асинхронный двигатель при подключении на 220 В требует необходимой точности с подбором ёмкостей пускового и основного конденсатора, обеспечивающие его уверенный запуск и надёжную работу. При недостаточной ёмкости мощность электродвигателя будет недостаточной, что отразится на качестве его работы, а при избыточной возрастают протекающие через обмотки токи, вызывающие перегрев обмоток, создавая межвитковое замыкание и выходом из строя электродвигателя.

Как подобрать ёмкости конденсаторов

Чтобы не вдаваться в подробности инженерного расчёта, используя громоздкие формулы, можно использовать простой и понятный расчёт ёмкости конденсатора, исходя из условия, что на каждые 100 Вт принимается 7 мкф. Если двигатель имеет мощность 1 киловатт (1000 Вт), то рассчитывается 7 умноженное на 10, в итоге получается 70 мкф.

Полученная ёмкость при расчёте не всегда может совпадать с табличными значениями выпускаемых конденсаторов. Для получения необходимой ёмкости нужно соединить конденсаторы параллельно между собой для суммарного значения расчётной ёмкости. Пусковые конденсаторы имеют сокращённое время работы только при пуске, что даёт возможность использования недорогих ёмкостей, специально предназначенных для этих целей.

Если запуск двигателя производится без нагрузки, то необходимость в пусковом конденсаторе отпадает. При использовании нагрузки требуется в обязательном порядке использовать пусковой конденсатор.

Использовать можно плёночные конденсаторы или металлобумажные (МБГО, МБГЧ, К78−17, К75−12, БГТ и другие). Запас допустимого напряжения должен на 30% превышать напряжение питающей сети, что отражено на корпусе конденсатора.

Подключение электродвигателя 380 В на 220 В через конденсатор позволяет также изменить направление вращения электродвигателя.

Реверсное переключение можно производить при помощи магнитного пускателя. Необходимо на одну из обмоток (А) подать питание 220 В (фаза и ноль), а две другие обмотки (В и С), соединённых последовательно, подключить параллельно обмотке (А). К средней точке между обмотками (В и С) включают вывод конденсатора, а другой его вывод подключен либо к нолю, либо к фазе, что меняет направление вращения асинхронного электродвигателя.

Читайте также  Фотореле ps2 схема подключение
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]