Применение металла титан в промышленности и строительстве
Совмещение в одном веществе прочности и легкости – параметр ценный настолько, что остальные качества и особенности материала могут совершенно игнорироваться. Титан дорог в производстве, стоек к температурам только в сверхчистом виде, сложен в использовании, но все это оказывается второстепенным по сравнению с комбинацией малого веса и высокой прочности.
Данная статья расскажет вам о применении титана в военной авиации, промышленности, медицине, авиастроении, для изготовления ювелирных изделий, о сплавах титана, их свойствах и применении в быту.
Области применения титана
Область использования металла была бы значительно шире, если бы не высокая стоимость его получения. Из-за этого применяют титан лишь в тех областях, где использование столь дорогого вещества экономически оправдано. Обуславливает применение не только прочность и легкость, но и стойкость к коррозии, сравнимая со стойкостью благородных металлов и долговечности.
Свойства металла необыкновенно сильно зависят от чистоты, поэтому применение технического и чистого титана рассматриваются как 2 отдельных вопроса.
О том, благодаря каким свойствам титан так широко используется в промышленности, расскажет это видео:
Технический металл
Технический титан может содержать разнообразные примеси, не сказывающиеся на химических свойствах вещества, однако имеющих влияние на физические. Технический титан теряет такое ценное качество, как жаропрочность и способность работать при температурах выше 500–600 С. А вот коррозийная его стойкость никак не уменьшается.
- Этим и обусловлено его применение – в химической промышленности и в любой другой области, где необходимо обеспечить стойкость изделий в агрессивных средах. Из титана изготавливают емкости для хранения, арматуру, части реакторов, трубопроводов и насосов, назначением которых является перемещение неорганических и органических кислот и оснований. Такими же свойствами в большинстве своем обладают и титановые сплавы.
- Малый вес совместно с коррозийной стойкостью обеспечивает и другое применение – при изготовлении транспортной техники, в частности, железнодорожного транспорта. Использование титановых листов и прутков при изготовлении вагонов и поездов позволяет уменьшить массу составов, а, значит, уменьшить размеры букс и шеек, сделав тягу более эффективной.
- Незаменим титан в производстве бронетанковой техники: вот где соединение прочности и легкости оказывается решающим.
- Высокая коррозийная стойкость и легкость делает материал привлекательным и для военно-морского дела. Титан применяют при изготовлении тонкостенных труб и теплообменников, выхлопных глушителей на подводных лодках, клапанов, пропеллеров, элементов турбин и так далее.
Изделия из титана (фото)
Чистый металл
Чистый металл проявляет очень высокую жаропрочность, способность работать в условиях высокой нагрузки и высокой температуры. А, учитывая его малый вес, применение металла в ракето- и авиастроении оказывается очевидным.
- Из металла и его сплавов изготавливают детали крепления, обшивку, части шасси, силовой набор и так далее. Кроме того, материал используется при конструировании авиационных двигателей, что позволяет снизить их вес на 10–25%.
- Ракеты при прохождении через плотные слои атмосферы испытывают чудовищные нагрузки. Применение титана и его сплавов позволяет разрешить задачу статической выносливости аппарата, усталостной прочности и в какой-то мере ползучести.
- Еще одно применение чистого титана – изготовление деталей электровакуумных приборов, рассчитанных на эксплуатацию в условиях перегрузок.
- Незаменим металл в производстве криогенной техники: прочность титана с понижением температуры только увеличивается, но при этом сохраняется некоторая пластичность.
- Титан является едва ли не самым биологически инертным веществом. Коммерчески чистый металл используют для изготовления всех видов внешних и внутренних протезов вплоть до сердечных клапанов. Титан совместим с биологической тканью и не вызвал ни единого случая аллергии. Кроме того, материал применяют для хирургических инструментов, инвалидных костылей, колясок и так далее.
Титан хорошо полируется, анодируется – цветное анодирование, поэтому часто применяется в художественных произведениях и в архитектуре. Примером может послужить памятник первому искусственному спутнику земли или памятник. Ю. Гагарину.
Про маркировку на изделиях из титана, инструкции по его применению и иные важные моменты использования металла в строительстве, расскажем ниже.
В видео ниже показан процесс андонирования титана:
Его использование в строительстве
Конечно, львиная доля титана используется в авиастроении и в транспортной промышленности, где особенно важно сочетание прочности и легкости. Однако и в строительстве материал применяется, и применялся бы шире, если бы не высокая стоимость.
Обшивка титаном
Эта технология распространена пока мало, но, например, в Японии титановые листы очень широко используют для отделки крыш и даже внутренних интерьеров. Доля материала, расходуемого в строительстве, значительно выше доли, используемой в авиасекторе.
Связано это как с прочностью такой облицовки, так и с ее удивительными декоративными возможностями. Методом анодного окисления на поверхности листа можно получить слой оксидов разной толщины. Цвет при этом изменяется. Изменяя время отжига и интенсивность, можно получить желтый, бирюзовый, синий, розовый, зеленый цвета.
При анодировании в атмосфере азота изготавливают листы со слоем нитрида титана. Таким образом, получают самые разнообразные оттенки золота. Эта технология используется при реставрации памятников архитектуры – восстановление церквей, например.
Далее будет рассмотрен такой способ применения титана как изготовление фальцевой кровли.
Фальцевые кровли
Этот вариант уже получил весьма широкое распространение. Но, правда, основой его служит не сам титан, а его сплав с цинком.
Сами по себе фальцевые кровли известны очень давно, но давно не пользовались популярностью. Однако сегодня благодаря моде на стили хай-так и техно появилась потребность в ломаных и сплайновых поверхностях, особенно переходящих в фасад здания. А такую возможность и предоставляет металлическая кровля.
Ее способность к формообразованию практически безгранична. А применение сплава цинк-титан обеспечивает и исключительную прочность, и самый необычный внешний вид. Хотя справедливости ради базовый матово-стальной цвет считается самым респектабельным.
Поскольку цинк-титан обладает вполне достойной ковкостью, из сплава изготавливают разнообразные сложные декоративные детали: коньки крыш, водостойкие отливы, карнизы и прочее.
Такая область применения титана как облицовка фасада рассмотрена кратко ниже.
Облицовка фасада
При изготовлении облицовочных панелей также используется цинк-титан. Применяют панели и для облицовки фасадов, и для отделки интерьеров. Причина та же – комбинация прочности, исключительной легкости и декоративности.
Выпускаются панели самой разной формы – в виде ламелей, ромбов, модулей, чешуи и так далее. Самое интересное, это то, что панели могут быть не плоскими, а принимать едва ли не любые объемные формы. В результате такая отделка возможна на стенах и зданиях любой, самой немыслимой конфигурации.
Легкость изделия обуславливает и другое совершенно уникальное применение. Обычный вентилируемый фасад подразумевает закрепление плит и зазор между облицовкой и утеплителем. Однако легкие панели цинк-титана можно крепить на подвижные открывающиеся механизмы, образуя систему, наподобие жалюзи. Пластины по необходимости могут отклоняться от плоскости на угол в 90 градусов.
Титан обладает уникальным сочетанием прочности, легкости и коррозийной стойкости. Эти качества обуславливают его применение, несмотря на высокую стоимость материала.
Титан
В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.
Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.
Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.
Физические и механические свойства
Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.
По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.
Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.
В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».
Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.
Химические свойства
Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.
Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.
Способы получения
Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.
1. Магниетермический процесс.
Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.
2. Гидридно-кальциевый метод.
Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.
3. Электролизный метод.
Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.
4. Йодидный метод.
Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.
Применение титана
Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.
Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.
Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.
Всё, что необходимо знать о металле ТИТАН (Ti)…
-Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.
Основные сведения:
-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия:
-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана:
-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства:
Химические свойства:
Марки титана и сплавов:
-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св. В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С. Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.
Достоинства / недостатки:
— Достоинства:
-малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
-высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые -сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
-необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности -тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
— Недостатки:
-высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
-активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, -составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
-трудности вовлечения в производство титановых отходов;
-плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
-высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
-плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
-большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.
Области применения:
-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.
-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!
-С уважением DrPavlov.
Где применяют ТИТАН
При существующих высоких ценах на титан его применяют преимущественно для производства военного оборудования, где главная роль принадлежит не стоимости, а техническим характеристикам. Тем не менее известны случаи использования уникальных свойств титана для гражданских нужд. По мере снижения цен на титан и роста его производства применение этого металла в военных и гражданских целях будет все больше расширяться.
Авиация. Малый удельный вес и высокая прочность (особенно при повышенных температурах) титана и его сплавов делают их весьма ценными авиационными материалами. В области самолетостроения и производства авиационных двигателей титан все больше вытесняет алюминий и нержавеющую сталь. С повышением температуры алюминий быстро утрачивает свою прочность. С другой стороны, титан обладает явным преимуществом в отношении прочности при температуре до 430° С, а повышенные температуры такого порядка возникают при больших скоростях благодаря аэродинамическому нагреванию. Преимущество замены стали титаном в авиации заключается в снижении веса без потери прочности. Общее снижение веса с повышением показателей при повышенных температурах позволяет увеличить полезную нагрузку, дальность действия и маневренность самолетов. Этим объясняются усилия, направленные на расширение применения титана в самолетостроении при производстве двигателей, постройке фюзеляжей, изготовлении обшивки и даже крепежных деталей.
При постройке реактивных двигателей титан применяется преимущественно для изготовления лопаток компрессора, дисков турбины и многих других штампованных деталей. Здесь титан вытесняет нержавеющую и термически обрабатываемую легированную стали. Экономия в весе двигателя в один килограмм позволяет сберегать до 10 кг в общем весе самолета благодаря облегчению фюзеляжа. В дальнейшем намечено применять листовой титан для изготовления кожухов камер сгорания двигателя.
В конструкции самолета титан находит широкое применение для деталей фюзеляжа, работающих при повышенных температурах. Листовой титан применяется для изготовления всевозможных кожухов, защитных оболочек кабелей и направляющих для снарядов. Из листов легированного титана изготовляются различные элементы жесткости, шпангоуты фюзеляжа, нервюры и т. д.
Кожухи, закрылки, защитные оболочки для кабелей и направляющие для снарядов изготовляются из нелегированного титана. Легированный титан применяется для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов и противопожарных перегородок.
Титан получает все большее применение при постройке самолетов F-86 и F-100. В будущем из титана будут делать створки шасси, трубопроводы гидросистем, выхлопные патрубки и сопла, лонжероны, закрылки, откидные стойки и т. д.
Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков.
В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52.
Применяется титан и при постройке гражданских самолетов DC-7. Фирма «Дуглас» заменой алюминиевых сплавов и нержавеющей стали титаном при изготовлении мотогондолы и противопожарных перегородок уже добилась экономии в весе конструкции самолета около 90 кг. В настоящее время вес титановых деталей в этом самолете составляет 2%, причем эту цифру предусматривается довести до 20% общего веса самолета.
Применение титана позволяет уменьшить вес геликоптеров. Листовой титан используется для полов и дверей. Значительное снижение веса геликоптера (около 30 кг) было достигнуто в результате замены легированной стали титаном для обшивки лопастей его несущих винтов.
Военно-морской флот. Коррозионная стойкость титана и его сплавов делает их весьма ценным материалом на море. Военно-морское министерство США обстоятельно исследует коррозионную стойкость титана против воздействия дымовых газов, пара, масла и морской воды. Почти такое же значение в военно-морском деле имеет и высокое значение удельной прочности титана.
Малый удельный вес металла в сочетании с коррозионной стойкостью повышает маневренность и дальность действия кораблей, а также снижает расходы по уходу за материальной частью и ее ремонту.
Применение титана в военно-морском деле включает изготовление выхлопных глушителей для дизельных двигателей подводных лодок, дисков измерительных приборов, тонкостенных труб для конденсаторов и теплообменников. По мнению специалистов, титан, как никакой другой металл, способен увеличить срок службы выхлопных глушителей на подводных лодках. Применительно к дискам измерительных приборов, работающих в условиях соприкосновения с соленой водой, бензином или маслом, титан обеспечит лучшую стойкость. Исследуется возможность применения титана для изготовления труб теплообменников, которые должны обладать коррозионной стойкостью в морской воде, омывающей трубы снаружи, и одновременно противостоять воздействию выхлопного конденсата, протекающего внутри них. Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.
Артиллерия. По-видимому, наиболее крупным потенциальным потребителем титана может явиться артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Тем не менее в этой области стандартизовано производство лишь отдельных деталей и частей из титана. Весьма ограниченное использование титана в артиллерии при большом размахе исследований объясняется его высокой стоимостью.
Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан. Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).
Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг удалось создать одну деталь весом 11 кг. Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана для изготовления орудийных пламегасителей.
Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.
Проведенные первые исследования титана и его сплавов показали возможность изготовления из них броневых плит. Замена стальной брони (толщиной 12,7 мм) титановой броней одинаковой снарядостойкости (толщиной 16 мм) позволяет получить, по данным этих исследований, экономию в весе до 25%.
Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44%. Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.
Транспорт. Многие из тех выгод, которые сулит использование титана при производстве бронетанковой материальной части, относятся и к транспортным средствам.
Замена конструкционных материалов, потребляемых в настоящее время предприятиями транспортного машиностроения, титаном должна привести к снижению расхода топлива, росту полезной грузоподъемности, повышению предела усталости деталей кривошипно-шатунных механизмов и т. п. На железных дорогах исключительно важно снизить мертвый груз. Существенное уменьшение общего веса подвижного состава за счет применения титана позволит сэкономить в тяге, уменьшить габариты шеек и букс.
Важное значение вес имеет и для прицепных автотранспортных средств. Здесь замена стали титаном при производстве осей и колес также позволила бы увеличить полезную грузоподъемность.
Все эти возможности можно было бы реализовать при снижении цены титана с 15 до 2-3 долларов за фунт титановых полуфабрикатов.
Химическая промышленность. При производстве оборудования для химической промышленности самое важное значение имеет коррозионная стойкость металла. Существенно также снизить вес и повысить прочность оборудования. Логически следует предположить, что титан мог бы дать ряд выгод при производстве из него оборудования для транспортировки кислот, щелочей и неорганических солей. Дополнительные возможности применения титана открываются в производстве такого оборудования, как баки, колонны, фильтры и всевозможные баллоны высокого давления.
Применение трубопроводов из титана способно повысить коэффициент полезного действия нагревательных змеевиков в лабораторных автоклавах и теплообменниках. О применимости титана для производства баллонов, в которых длительно хранятся газы и жидкости под давлением, свидетельствует применяемая при микроанализе продуктов сгорания вместо более тяжелой трубки из стекла (показана в верхней части снимка). Благодаря малой толщине стенок и незначительному удельному весу эта трубка может взвешиваться на более чувствительных аналитических весах меньших размеров. Здесь сочетание легкости и коррозионной стойкости позволяет повысить точность химического анализа.
Прочие области применения. Применение титана целесообразно в пищевой, нефтяной и электротехнической промышленности, а также для изготовления хирургических инструментов и в самой хирургии.
Столы для подготовки пищи, пропарочные столы, изготовленные из титана, по качествам превосходят стальные изделия.
В нефте- и газобурильной областях серьезное значение имеет борьба с коррозией, поэтому применение титана позволит реже заменять корродирующие штанги оборудования. В каталитическом производстве и для изготовления нефтепроводов желательно применять титан, сохраняющий механические свойства при высокой температуре и обладающий хорошей коррозионной устойчивостью.
В электропромышленности титан можно применить для бронирования кабелей благодаря хорошей удельной прочности, высокому электрическому сопротивлению и немагнитным свойствам.
В различных отраслях промышленности начинают применять крепежные детали той или иной формы, изготовленные из титана. Дальнейшее расширение применения титана возможно для изготовления хирургических инструментов главным образом благодаря его коррозионной стойкости. Инструменты из титана в этом отношении превосходят обычные хирургические инструменты при многократном кипячении или обработке в автоклаве.
В области хирургии титан оказался лучше виталлиума и нержавеющих сталей. Присутствие титана в организме вполне допустимо. Пластинка и винты из титана для крепления костей находились в организме животного несколько месяцев, причем имело место прорастание кости в нитки резьбы винтов и в отверстие пластинки.
Преимущество титана заключается также в том, что на пластине образуется мышечная ткань.