ГЕРКОНОВЫЙ ДАТЧИК И ЕГО УСТРОЙСТВО
Принцип работы герконового датчика основан на изменении положения (замыкания-размыкания) контактных пластин при воздействии на них магнитного поля.
- геркон;
- магнит,
помещенные каждый в отдельный корпус (на рисунке условно не показаны – для наглядности).
- защита от неблагоприятных внешних условий, что препятствует окислению и загрязнению рабочих поверхностей;
- отсутствие механического привода;
- отсутствие искрообразования при переключении.
Управление герконом, как уже говорилось, происходит магнитным полем (приближением или удалением второго компонента датчика – магнита).
Таким образом, очевидно, что герконовый датчик способен работать в условиях любых сред. За счет отсутствия открытого искрообразования его можно использовать во взрывоопасных зонах.
К недостаткам можно отнести то, что, в большинстве своем герконы не рассчитаны на коммутацию больших токов и напряжений. Но при применении в системах автоматики и управления это не критично. При необходимости можно использовать промежуточные реле и коммутаторы.
Еще одним минусом является небольшой рабочий зазор – расстояние между герконом и магнитов, вызывающее срабатывание датчика (как правило, не более 1-3 см.). Это определяет область применения такого устройства как датчика положения (основные решения рассмотрим ниже).
Еще следует иметь ввиду, что магнитоуправляемые контакты обладают гистерезисом, то есть их возврат в исходное положение, например, размыкание, происходит при удалении магнита на бо́льшее расстояние, чем это требуется для замыкания (рис.2).
- величины коммутируемых токов и напряжений;
- расстояния включения и выключения (два значения!).
Для уменьшения сопротивления контактов могут использоваться различные технологии, но в контексте данной статьи это не принципиально.
ВИДЫ И ПРИМЕНЕНИЕ ГЕРКОНОВЫХ ДАТЧИКОВ
Рассматриваемые устройства широко применяются в системах охранной сигнализации для контроля открытия окон, дверей, люков.
Перечисленные выше особенности определяют правила их установки. При монтаже на металлических конструкциях следует учитывать ослабление воздействия магнита, входящего в комплект поставки. Для предотвращения таких моментов используют специальные исполнения датчиков.
С деревянными и пластиковыми дверями таких проблем не возникает, поэтому на первый план выходят вопросы миниатюризации и дизайна.
В приведенном примере рабочий зазор будет составлять порядка 15 мм. Но это по максимуму. Следует делать запас на внешние условия и то, что со временем поле магнита может ослабнуть.
Таким образом, при применение миниатюрных исполнений установку следует производить аккуратно и точно. Кроме того, качество дверей должно быть таким, чтобы исключить возможные люфты и перекосы в процессе эксплуатации.
Поскольку герконовые датчики открытия, а правильней – открывания, дверей применяются практически в любой системе сигнализации, исполнения их предусматривают множество вариантов установки, в том числе и скрытой.
Кстати, в системах сигнализации для них применяется другое название – магнитоконтактные извещатели.
Еще одна область применения магнитоуправляемых устройств – датчики уровня воды и других жидкостей. Конструкция их должна быть поплавковой. В поплавке устанавливается магнит, а на отметке требуемого уровня – геркон.
- геометрическими размерами корпуса;
- предотвращением одновременного срабатывания двух и более герконов.
Следует отметить удобство использования описываемых возможностей для определения положения автоматически открываемых (закрываемых) конструкций: ворот, шлюзов, шлагбаумов и пр. На таком принципе действуют некоторые концевые выключатели.
Подключение герконового датчика доступно даже начинающему: два вывода включаются в электрическую цепь устройства контроля и управления. Единственно что следует учесть – по какому событию будет формироваться управляющая команда: замыканию или размыканию контактов.
Простота, надежность и неприхотливость в обслуживании определяют широкое распространение магнитоконтактных датчиков, причем, здесь перечислены лишь наиболее популярные области применения. На практике их значительно больше.
© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
Герконовые датчики: принцип работы, схема
Любая техника может ориентироваться в окружающей среде только с помощью специальных датчиков, которые позволяют получить необходимую информацию. Они могут быть нацелены на выяснение скорости объекта, состояния, текущих целей или типа изменений в окружающей среде. Одними из самых полезных считаются герконовые датчики. Почему именно так?
Что такое герконовый датчик?
Разнообразие и принцип работы
- Имеют замыкающийся контакт. В таких случаях, когда отсутствует магнитное поле, то датчик в разомкнутом состоянии. Когда оно есть, то он замыкается.
- Имеют размыкающийся контакт. Когда отсутствует магнитное поле, то датчик в замкнутом состоянии. Когда оно есть, он размыкается.
- Имеют переключающийся контакт. Конструктивно отличаются от двоих предыдущих. В первую очередь тем, что имеют три вывода. Так, если отсутствует магнитное поле, то замыкается одна пара. Когда оно есть, то другая.
Классификация может быть проведена исходя из особенностей конструкции:
- Используются «смоченные» контакты. Сюда относятся герконы, выводы которых соприкасаются с каплями ртути. Её присутствие уменьшает контактное электрическое сопротивление. Также данный тип отличается низкой вероятностью возникновения дребезга.
- Используются «сухие» контакты.
Особенности
- Значение напряженности, которое должно быть у магнитного поля, чтобы произошло замыкание контактов.
- Коммутируемый ток.
- Значение напряженности, которым должно обладать магнитное поле, чтобы происходило размыкание контактов.
- Максимальная мощность, что может быть коммутируемая герконом.
- Значение электрического сопротивления, которое имеет зазор между сердечниками (интересует только разомкнутое состояние).
- Напряжение, при котором возникает пробой геркона.
- Сопротивление в контактной области, которое возникает во время замыкания сердечников.
- Время, которое проходит между моментами влияния управляющего магнитного поля и замыканием электрической цепи.
- Электрическая емкость, которая имеется между выводами геркона, когда он в разомкнутом состоянии.
- Время, которое необходимо, чтобы после удаления эффекта магнитного поля произошло размыкание электрической цепи.
- Коммутируемое напряжение.
- Число срабатываний геркона, при котором основные его параметры будут оставаться в допустимых пределах.
Преимущества
- Отсутствует дребезг контактов (относится к герконам, у которых выводы смочены ртутью).
- Долговечность. Считается, что если датчик не поддаётся физическим ударам (вследствие падения или при неосторожном обращении), через него не пропускают слишком большой ток, то он может работать бесконечно. Хотя согласно технической документации, число срабатываний всё же ограничено значением в 10 3 —10 8 .
- Поскольку контакты геркона расположены в инертном газе или вакууме, то они слабо обгорают, даже когда происходит размыкание или размыкание с возникновением искры.
- Данные датчики обладают меньшим размером, чем классические реле, и при этом рассчитаны на точно такой же ток.
- При производстве для контактов не применяются драгоценные и тугоплавкие металлы, что позитивно сказывается на стоимости.
- Герконы почти не создают шум.
- Датчики обладают высоким быстродействием (если сравнивать их с классическими реле).
Недостатки
- Обладают значительным весом (если сравнивать с открытыми контактами).
- Необходимо создавать магнитное поле.
- Хрупкие. Не подлежат использованию в условиях ударных нагрузок и при сильных вибрациях.
- Попадают под влияние внешних магнитных полей, из-за чего возникает необходимость в защите.
- Иногда контакты геркона могут остаться в замкнутом состоянии, из которого их нельзя вывести.
- Ограничение скорости срабатывания.
- При больших токах контакты геркона могут самопроизвольно разомкнуться.
Применение
Где же нашли своё применение герконовые датчики? Но прежде чем говорить о них, стоит упомянуть, что наметилась тенденция их замены. В качестве более совершенной технологии используются твердотельные датчики Холла. Но вернёмся к теме статьи:
Геркон
Коммутационные устройства или просто контакты очень широко применяются в различной электрической и радиотехнической аппаратуре. С целью улучшения эксплуатационных свойств, прежде всего срока службы и надежности соединения и были разработаны магнитоуправляемые герметизированные контакты получившие название геркон.
Первые образцы таких контактов появились еще в 30 – е годы прошлого столетия, а первый магнитоуправляемый контакт был изобретен еще в 1922 году в Петербурге профессором В. Коваленковым, за что ему было выдано авторское свидетельство СССР №466. Конструкция такого контакта показано на рис. 1.
Устроен такой контакт следующим образом. К сердечнику 3 из магнитомягкого материала через изолирующие прокладки 5 прикреплены контакты 1 и 2, выполненные также из магнитомягкого материала. При пропускании тока через катушку 4 в сердечнике 3 возникает магнитное поле и намагничивает контакты 1 и 2, которые замыкаются. Размыкание контактов происходит при прекращении тока через катушку.
Рис. 1 Магнитоуправляемый контакт профессора В. Коваленкова
По сути это был самый первый магнитоуправляемый контакт, только без герметизирующей оболочки. В герметизирующую оболочку подобный контакт был впервые помещен американским инженером W.B. Ellwood лишь в 1936 году. В семидесятых годах прошлого столетия герконы достигли своего максимального развития, и нашли широкое применение в различных устройствах электронной техники.
В настоящее время герконы используются менее интенсивно, поскольку их «вытеснили» датчики Холла. Но в некоторых случаях герконы остались вне конкуренции, что обусловлено простотой применения, гальванической развязкой от источника питания, свойствами «сухого контакта», поэтому герконы до сих пор применяются в различных схемах и устройствах.
В тех случаях, когда требуется высокая надежность и долговечность коммутирующего элемента герконы просто незаменимы. Как составная часть герконы входят в конструкции различных датчиков, электромагнитных реле, особенно слаботочных, а также позиционных переключателей и некоторых других устройств.
Разновидности герконов
Так же, как и обычные контакты, герконы могут быть замыкающие (1 нормально — разомкнутый контакт), переключающие (1 переключающий контакт) и работающие на размыкание (1 нормально — замкнутый контакт). Это деление по функциональным признакам.
По признакам конструктивно — технологическим герконы делятся на две большие группы: с сухими контактами и с контактами ртутными. Первая разновидность так и называется сухими герконами, а вторая ртутными герконами. Собственно, в работе сухих герконов, по сравнению с обычными контактами, ничего особенного нет.
В ртутных герконах внутри герметичного стеклянного корпуса кроме контактов находится еще капелька ртути. Назначение этой ртутной капельки – смачивание контактов во время срабатывания для улучшения качества контакта за счет уменьшения переходного сопротивления, а кроме того для избавления от дребезга контактов.
Дребезгом называется вибрация контактов при замыкании и размыкании, что при однократном срабатывании приводит к многократной коммутации передаваемого сигнала, а кроме того к значительному увеличению времени срабатывания. Представьте себе, что такой дребезг будет присутствовать в усилителе звуковых частот во время переключения входного сигнала! В случае, когда такой дребезжащий контакт работает совместно с цифровыми микросхемами, приходится принимать меры по подавлению дребезга в виде RC — цепочек или RS – триггеров.
Различные контакты, в том числе и герконовые, применяются и в современных микроконтроллерных схемах, но в них дребезг контактов подавляется программным способом. Это также снижает быстродействие системы в целом.
Конструкция герконов
Конструкция различных типов герконов представлена на рис. 2.
Рис. 2 Конструкция герконов
Все герконы представляют собой герметичный стеклянный баллон, внутри которого находится контактная группа. Контакты представляют собой магнитные сердечники, вваренные в торцы баллона. Наружные концы сердечников предназначены для подключения к внешней электрической цепи.
Наибольшее распространение получил геркон с контактной группой, работающей на замыкание или, как показано на рисунке «разомкнутый». Каждый контакт – сердечник выполнен из ферромагнитной упругой проволоки, которая расплющена до прямоугольной формы. Для изготовления сердечников применяется пермаллоевая проволока диаметром 0,5 — 1,3 мм в зависимости от мощности геркона и, соответственно, его габаритов.
Непосредственно контактирующие поверхности покрыты благородным металлом, золотом, палладием, родием, серебром и сплавами на их основе. Такое покрытие не только уменьшает переходное сопротивление, но и способствует повышению коррозионной стойкости контактной поверхности.
Внутренне пространство баллона заполнено инертным газом (водородом, аргоном, азотом или их смесью) или просто вакуумировано, также способствует уменьшению коррозии контактов и повышению их надежности. При изготовлении сердечники располагают таким образом, чтобы между ними оставался зазор, кстати, определенного размера.
Рис. 3. Геркон
Принцип работы геркона
Для того, чтобы вызвать срабатывание контактной группы, необходимо вокруг геркона создать магнитное поле достаточной напряженности. При этом абсолютно не важно, как это поле будет создано, либо просто постоянным магнитом, либо электромагнитом. Силовые линии внешнего магнитного поля намагничивают внутренние контакты – сердечники геркона, в результате чего они преодолевают силы упругости, притягиваются и замыкают электрическую цепь.
В таком состоянии контакты будут находиться до тех пор, пока вокруг них есть магнитное поле достаточной напряженности: достаточно выключить электромагнит или убрать подальше обычный постоянный магнит, как контакты сразу разомкнутся. Следующее срабатывание контактов произойдет, когда магнитное поле появится вновь. Из всего сказанного можно сделать вывод, что контакты выполняют сразу три функции: упругих элементов (пружин), магнитопровода, и собственно проводящих контактов.
Несколько по-иному действует геркон, работающий на размыкание. Его магнитная система устроена так, что при воздействии магнитного поля контакты – сердечники намагничиваются одноименно, поэтому отталкиваются друг от друга, размыкая электрическую цепь.
У переключающего геркона один из трех контактов, как правило, нормально — замкнутый выполняется из металла немагнитного, а оба нормально – разомкнутых контакта из ферромагнитного, как было сказано чуть выше. Поэтому при воздействии на геркон магнитного поля нормально разомкнутые контакты просто замыкаются, а немагнитный нормально – замкнутый, оставаясь на своем первоначальном месте, размыкается.
Примечание. Нормально – разомкнутый контакт, это который разомкнут при отсутствии управляющего воздействия, в данном случае магнитного поля. Соответственно нормально — замкнутый контакт замкнут при отсутствии магнитного поля.
Конечно, магнитное поле присутствует всегда, например магнитное поле Земли. И нельзя, вроде бы, сказать про отсутствие магнитного поля совсем. Но магнитное поле Земли для срабатывания геркона недостаточно, поэтому им можно пренебречь и сказать об отсутствии магнитного поля, в данном случае внешнего.
Способы управления, примеры использования
Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.
Механические параметры герконов
К механическим параметрам относится магнитодвижущая сила срабатывания. Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп).
Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания. Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона. Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием.
Максимальное число срабатываний, или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.
Электрические параметры герконов
Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз.
Электрическая прочность геркона. Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.
Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax.
Емкость, измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами.
Способы управления герконами
Их можно разделить на две большие группы: управление постоянным магнитом и управление при помощи катушки с током. Эти способы показаны на рис. 4.
Рис. 4 Различные способы управления герконами
Управление герконом при помощи постоянного магнита
Наиболее прост и распространен способ управления с линейным перемещением магнита. Здесь вполне уместно вспомнить охранную сигнализацию, где магнит укреплен на двери и заставляет срабатывать геркон, когда дверь закрыта.
Способ с угловым перемещением магнита используется намного реже, как правило, в тех случаях, когда другие способы применить по како й -либо причине невозможно.
Перекрытие магнитного поля шторкой использовалось в клавиатурах различных вычислительных устройств, вплоть до девяностых годов прошлого столетия, а может быть можно встретить где-нибудь и до сих пор.
Управление герконом при помощи катушки с постоянным током
Этот способ получил наибольшее распространение при создании герконовых реле. Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп.
Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.
П реимущества и недостатки герконов
Как и любая вещь герконы имеют свои недостатки и преимущества. Сначала поговорим, естественно, о преимуществах. По сравнению с обычными коммутирующими контактами герконы имеют чуть ли не в 100 раз большую надежность по сравнению с обычными открытыми контактами. Эта надежность обусловлена более высоким сопротивлением изоляции (достигает десятков Мега Ом), и большей электрической прочностью: пробивное напряжение у некоторых типов герконов достигает нескольких десятков киловольт.
Неоспоримым преимуществом герконов является их быстродействие: у некоторых моделей герконов частота коммутации достигает 1000 Гц, а скорость срабатывания и отпускания находится в пределах (0,5 — 2,0 мс) И (0,2 — 1,0 мс) соответственно.
Срок службы некоторых герконов доходит до 4 — 5 млрд. срабатываний, что намного выше аналогичного показателя для обычных не защищенных контактов. Также к достоинствам герконов следует отнести легкий способ согласования с нагрузкой а также работа герконов без применения источников электрической энергии.
На фоне достоинств недостатки, наверно, не так уж и велики. Во-первых, это небольшая коммутируемая мощность. Кроме того малое количество контактных групп в одном баллоне а для «сухих» герконов дребезг контактов. К недостаткам же можно отнести также хрупкость стеклянного баллона и в некоторых случаях высокую чувствительность к внешним магнитным полям.
Схема подключения герконового датчика
Герконовый датчик – это прибор, созданный для улучшения технических свойств и срока службы контактов электроаппаратуры. Подключить его можно как своими руками, так и с помощью профессиональных технических служб. Подключение своими руками, в отсутствие соответствующей компетенции, может занять достаточно много времени или вовсе привести к неудачной попытке установки геркона. С помощью сервиса Юду вы в кратчайший срок можете найти и заказать услугу профессиональных служб по подключению герконового реле: достаточно оставить заявку на сайте или выбрать наиболее подходящее предложение из каталога исполнителей.
Что такое магнитный геркон
Магнитный геркон является основным компонентом системы контактного реле в различных электромагнитных схемах. Герконовый датчик содержит два контакта из ферромагнитного сплава, заключенных в стеклянную колбу. Если к контактам поднести магнитный элемент – они замыкаются, образуя непрерывную электромагнитную сеть.
Геркон часто применяется:
- Для установки датчиков, показывающих открывание дверей в системах охраны, для защиты объекта от нежелательного проникновения
- Для установки на окна, в качестве датчика, сообщающего об открытии конструкции
- Для установки на ворота и иную входную группу для защиты от нежелательного проникновения
Разновидности герконовых датчиков
Герконовые датчики по функциональности делятся на:
- Замыкающие
- Переключающие
- Размыкающие
По технологическим особенностям герконы делятся на два типа:
- Сухие
- Ртутные: внутри стеклянной конструкции находится капля ртути для уменьшения сопротивления и для недопущения нарушения контактов
Конструктивные особенности герконовых датчиков
По конструкции герконы делятся на:
- Разомкнутые
- Замкнутые
- Переключающие
- Разомкнутые ртутные
Наиболее распространенным видом герконовых датчиков является разомкнутый геркон. Каждый контакт в стеклянной емкости представляет собой плоскую проволоку. Поверхности контактов покрыты золотом, палладием, радием или серебром, что способствует уменьшению сопротивления и позволяет защитить контакты от коррозии. Пространство стеклянной колбы заполнено водородом, аргоном или азотом, либо просто представляет собой вакуумное пространство, что также способствует повышению антикоррозийных свойств.
Принцип работы герконового датчика
Принцип работы герконового датчика заключен во взаимодействии двух элементов: исполнительной и задающей. Задающая часть схемы работы геркона – это магнит, а исполнительная – сам геркон. Для замыкания контактной цепи геркона необходимо вокруг него создать магнитное поле. Как только магнитное поле исчезает, контакты герконового датчика перестают взаимодействовать.
Размыкающий геркон работает по несколько иной схеме: его магнитные элементы расположены таким образом, что при намагничивании контакты отталкиваются, осуществляя размыкание электрической цепи.
Схема работы переключающего геркона также имеет свои особенности: один из контактов системы сделан из немагнитного металла, а другие – из ферромагнитного. Таким образом, при магнитном воздействии на геркон, происходит замыкание ферромагнитных контактов, а немагнитные контакты размыкаются.
Схема работы герконового датчика
Для обеспечения замыкания электромагнитной сети герконового датчика и осуществления его работы магнитная часть системы крепится на открываемой конструкции (окно, дверь или ворота), а сам геркон на дверной или оконной коробке. Если дверь закрыта, магнитное поле действует на контактную сеть геркона, замыкая электромагнитную цепь. Датчик охранной системы показывает, что входная группа закрыта. Стоит открыть дверь – магнит перестает действовать, размыкает цепь, заставляя тем самым срабатывать сигнал тревоги.
В документации на датчик есть вся необходимая информация для установки его своими руками.
В зависимости от конструкций, на которые устанавливается геркон, датчики делятся на несколько видов:
- Датчики скрытого монтажа для стальных конструкций
- Датчики скрытого монтажа для магнитопассивных конструкций
- Датчики наружного монтажа для стальных конструкций
- Датчики наружного монтажа для магнитопассивных конструкций
Тип устанавливаемого геркона определяется в соответствии с массивностью конструкции и материалом, из которого она изготовлена.
Рекомендации для защиты геркона от несанкционированного проникновения
Если вы осуществляете подключение герконового датчика своими руками, то при установке стоит обратить внимание на следующие моменты:
- Устанавливайте герконовые и магнитные датчики таким образом, чтобы они были направлены друг к другу и установлены на коротком расстоянии. Тогда поднесение постороннего магнита вызовет размыкание электромагнитной цепи, и сработает сигнал тревоги
- Установите очень тонкую металлическую пластину между герконовым датчиком и магнитом. Она послужит защитным магнитным экраном
Как заказать услугу профессиональных технических служб по подключению герконового датчика
Осуществить подключение геркона своими руками, обладая навыками и знаниями в этой области, не составит труда. Если же компетенции для подключения датчика своими руками не хватает, то лучше обратиться к услугам профессиональных служб, которые осуществят подключение недорого и достаточно быстро. Чтобы заказать такие услуги с помощью сервиса Юду, необходимо: