Проверка радиодеталей осциллографом, начинающим радиолюбителям
При изготовлении и ремонте радиоэлектронной аппаратуры устанавливаются различные радиоэлементы. Чтобы убедиться в их исправности, проводится предварительный (входной) контроль, который можно осуществлять с помощью приставки к любому осциллографу.
Принципиальная схема
Принципиальная схема приставки изображена на рис. 1. Приставка к осциллографу позволяет проверять практически все элементы, устанавливаемые в радиоэлектронные устройства бытовой аппаратуры: от резисторов до управляемых вентилей (тиристоров), а также дает возможность оценить качество потенциометров, катушек индуктивности, исправность переключателей, реле, трансформаторов и т. д.
Таким образом, один осциллограф может заменить почти всю измерительную лабораторию входного контроля. Необходимо иметь в виду, что осциллограф служит не только для наблюдений различных процессов, связанных с изменением формы напряжения.
Рис. 1. Принципиальная электрическая схема приставки к осциллографу.
Осциллограф можно использовать как электронный вольтметр, омметр, а применяя приставку к осциллографу, можно наблюдать на экране осциллографа характеристики транзисторов, что расширяет возможности использования осциллографа в ремонтной и любительской практике.
Конструкция и работа с приставкой
Приставка собирается в металлическом или пластмассовом корпусе размерами 50 X 75 X 100 мм с использованием малогабаритного трансформатора, понижающего напряжение с 220 до 6,3 В. Мощность трансформатора небольшая (20 мВт), а потребляемый ток не превышает 2—3 мА.
Рис. 2. Соединение приставки с осциллографом.
Работа с приставкой. Выводы приставки 1, 2, 3 соединяют с соответствующими выводами осциллографа (рис. 2). Осциллограф переводят в режим работы с внешней синхронизацией или с разверткой от внешнего источника. Подключают приставку к сети. На экране появится горизонтальная линия (если выводы 1 и 2 не замкнуты).
Затем Нажимают кнопку КН1, линия на экране осциллографа должна при этом отклониться на некоторый угол. Ручками «Усиление по горизонтали», «Усиление по вертикали» и «Установка по вертикали» добиваются того, чтобы линия располагалась в центре экрана под углом 45° к горизонтальной оси. Длина изображения должна быть равна половине диаметра экрана (рис. 3).
Проверяемый элемент всегда подключают к выводам приставки 3 я 2. Вертикальная линия на экране (см. рис. 3) свидетельствует о коротком замыкании, горизонтальная — об обрыве в цепи или в элементе. Характер изображения на экране осциллографа определяется зависимостью сопротивления испытуемого элемента от величины и полярности подводимого к нему синусоидального напряжения.
Проверка электронных компонентов
Покажем, что можно увидеть на экране осциллографа при исследовании следующих элементов.
Полупроводниковые диоды. Полярность включения и вид кривых на экране показаны на рис. 3, а, б. При обратном включении диода получается кривая, изображенная на рис. 3, в. Так можно определить выводы анода и катода диодов, у которых стерта маркировка.
Если вершина угла на экране скруглена или одна из его сторон много больше другой, или направление прямых сильно отличается от горизонтального и вертикального, то диод должен быть забракован.
Стабилитроны. Если напряжение стабилизации стабилитрона меньше 10 В, на горизонтальной линии появится излом (рис. 3,г). Расстояние от излома до вертикальной линии будет соответствовать напряжению стабилизации (в нашем случае 10 В).
Селеновые вентили. Если элемент исправный, то луч на экране будет вычерчивать горизонтальную линию, которая плавно переходит в вертикальную (рис. 3, д).
У неисправного элемента вертикальная часть осциллограммы будет очень короткой или с большим наклоном. Такая кривая свидетельствует о большом падении напряжения на вентиле при прохождении тока в прямом направлении. Падение напряжения на селеновых выпрямителях много больше, чем на германиевых или кремниевых.
Рис. 3. Осциллограммы, полученные при проверке электрорадиоэлементов
Туннельные диоды. Способ включения показан на рис. 3, е. Характеристика исправного диода изображена на рисунке (кривая 1). Иногда, увеличивая усиление по горизонтали, удается получить картину, показанную на рисунке (кривая 2), которая представляет собой типичную характеристику туннельного диода. Перед проверкой других деталей ручку «Усиление по горизонтали» необходимо перевести в положение, найденное во время калибровки.
Управляемые вентили (тиристоры) (рис. 3,ж). Вид Ірольтамперной характеристики для исправного элемента (с отключенным управляющим выводом—УЭ) показан на рис. 3, ж,1. Когда управляющий электрод соединяют с зажимом 2, тиристор открывается и луч рисует на экране кривую, похожую на характеристику дабычного диода, включенного в проводящем направлении (рис. 3, ж, 2),
Транзисторы. Подключение их к приставке показано на рис. 3, з. Если выводы эмиттера и коллектора поменять местами, рисунок иа экране не изменится (база остается не подключенной). Луч на экране прочертит горизонтальную линию, она может быть слегка изогнута. Затем присоединяют базу к зажиму 2 и получают характеристику, изображенную на рис. 3, з (1 — для транзистора типа р-п-р, 2— для «типа п-р-п). Это еще один способ определения выводов электродов неизвестных транзисторов. При переключении вывода базы на зажим 3 ^первая осциллограмма, изображенная на рис. 3, з, будет соответствовать транзистору п-р-п.
Если при испытаниях транзисторов на экране не появится характеристика в виде буквы L, это значит, что в цепи электродов транзистора имеется обрыв. Когда один из отрезков осциллограммы (буквы L) изогнут, это означает, что неисправен один из р-п переходов транзистора.
Изгиб вертикальной линии свидетельствует о большом сопротивлении в прямом направлении, наклон горизонтальной линии — о малом Обратном сопротивлении перехода (большой обратный ток коллектора). Отклонение сторон угла от горизонтали и вертикали указывает на плохое качество переходов.
Обычно у мощных транзисторов (даже у самых лучших) всегда наблюдается большой обратный ток коллектора. Поэтому сначала надо испытать несколько исправных мощных транзисторов и затем уже по инм, как по эталонам, проверять другие. Явления, указывающие на короткое замыкание или обрыв в транзисторе, одинаковы для всех типов транзисторов.
Однопереходные транзисторы. Схема включения показана на рис. 3, к. Сначала следует провести измерение с отключенным эмиттером. На экране осциллографа должна появиться прямая линия с наклоном 30° по отношению к горизонтальной оси (рис. 3, к,
1). Затем соединяют эмиттер с зажимом 2, при этом часть прямой на экране должна изогнуться вверх (рис. 3, к, 2). Если эмиттер подключить к зажиму 3 (к базе транзистора), вертикальным станет нижний конец прямой (рис. 3, к, 3).
Резисторы (постоянные и переменные). Измеряя транспортиром угол наклона прямой на экране относительно горизонтали, можно приблизительно определить величины сопротивлений различных резисторов. Для этого следует использовать схему рис. 3, л и график, изображенный на рис. 4. Для резисторов с сопротивлением до 100 Ом луч на экране будет вычерчивать вертикальную ось, свыше 100 кОм — горизонтальную.
Рис. 4. График для определения величины сопротивления постоянных и переменных резисторов.
Эти две прямые определяют диапазон измерений осциллографа. Перед измерением резистор следует подключить к зажимам 3 и 2. Один из крайних выводов и средний вывод регулируемого резистора (потенциометра) подключают к приставке. При повороте оси исследуемого переменного резистора наклон прямой на экране должен измениться. Нечеткое изображение линии на экране указывает на загрязнение подвижного контакта резистора.
Фоторезисторы подключают к зажимам 3 и 2. Если входное отверстие фоторегулятора прикрыть, то на экране появится прямая, имеющая небольшой угол наклона. Если прибор осветить, появится вертикальная прямая. Используя график, приведенный на рнс. 81, можно определить сопротивление прибора при освещении с различной интенсивностью. Так подбирают фоторезисторы с близкими характеристиками, а также калибруют фотоэкспонометры.
Конденсаторы любого типа также присоединяют к зажимам 3 к 2. Для исправных конденсаторов емкостью до 0,85 мкФ на экране появится эллипс с горизонтальной большой осью (см. рис. 3, м). При емкости, близкой к 0,85 мкФ, на экране получится круг, а при емкости, превышающей эту величину, снова эллипс, но с большой вертикальной осью.
Рис. 5. График для нахождения емкостей проверяемых конденсаторов.
Измеряя отношения большой и малой осей эллипса, можно по графику, приведенному на рис. 5, найти приблизительную емкость конденсатора. Если большая ось эллипса наклонена, это свидетельствует о слишком большом токе утечки конденсатора.
Катушки, реле и трансформаторы. Выводы катушек, реле и обмоток трансформаторов подключают к зажимам 3 и 2 приставки и наблюдают эллипс иа экране осциллографа. При индуктивности катушки меньше 5 Г на экране получится эллипс, большая ось которого слегка наклонена относительно вертикали, при индуктивности 5 Г на экране будет круг, а выше 5 Г — эллипс, большая ось которого немного отклонена от горизонтальной оси.
Естественно, что точность таких измерений не высока, так как на вид осциллограммы влияет не только индуктивность, но и емкость обмоток. Форма осциллограммы, отличающаяся от описанной, указывает на короткое замыкание в катушке. Имея катушки, индуктивность которых известна, измеряемую индуктивность можно определить сравнением.
Проверка электрических цепей. Так как устройство позволяет оценивать очень малые значения сопротивления между зажимами 3 и 2, его можно использовать для проверки выключателей, электроламп, предохранителей, монтажных проводов и электрических цепей.
Источник: Бастанов В. Г. — «300 практических советов» 2-е издание 1986г. стр. 96-98. Также есть в 4-м издании 1992г. стр. 99-101.
Ремонт и техническое обслуживание автомобилей
Осциллограф может применяться для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора и других систем и устройств автомобиля. При комплексной автомобильной диагностике осциллограф дополняет проверку сканером, но в некоторых случаях может дать более подробную информацию о неисправностях в электрических и электронных системах.
При использовании осциллографа необходимо знать места подключения его щупов к диагностируемому элементу, а также форму осциллограммы для номинального режима работы этого элемента. Впрочем, методика использования осциллографа, как правило, подробно описана в инструкциях, прилагаемых к прибору.
Диагностирование датчиков осциллографом
Датчик положения коленчатого вала (ДПКВ)
Этот датчик служит для синхронизации времени подачи искры и срабатывания форсунок по такту сжатия в цилиндрах. В общем случае датчик сообщает блоку управления (ЭБУ) о положении поршня первого цилиндра в верхней мертвой точке при такте сжатия. Для различных марок автомобилей ДПКВ может располагаться рядом с задающим диском у шкива коленчатого вала или маховика.
Сигнал датчика положения коленчатого вала в номинальном рабочем режиме имеет синусоидальную форму с разрывом. Форма сигнала имеет равномерную одинаковую амплитуду. Если на осциллограмме присутствуют отклонения, значит, задающий диск имеет не равномерность вращения или люфт, т. е. плохо закреплен или поврежден.
Методика диагностирования ДПКВ осциллографом заключается в следующих действиях:
- измерительный щуп подключается к сигнальному проводу осциллографа;
- диапазон измерения напряжения устанавливается до 300…500 В;
- после нажатия кнопки или клавиши «Пуск» снимаем сигнал с датчика на дисплее. Форма сигнала должна соответствовать примеру, приведенному на рисунке 1.
Датчик положения распределительного вала (ДПРВ)
Датчик положения распределительного вала (или датчик фаз) служит для синхронизации времени впрыска топлива форсунками с временем открытия впускных клапанов. Осциллограмма сигнала с этого датчика имеет прямоугольную форму с амплитудой 12,3…12,7 В.
Больше информации о работе датчиков можно получить, если снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга.
На рисунке 2 показан номинальный сигнал датчиков положения коленчатого и распределительного вала.
На графике нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
Датчик массового расхода воздуха (ДМРВ)
Датчик массового расхода воздуха сообщает электронному блоку (ЭБУ) о количестве воздуха, поступившего в цилиндры двигателя для определения оптимального количества топлива, впрыскиваемого форсунками, т. е. времени открытого состояния форсунки при впрыске.
Основной параметр для диагностики датчика — это его нулевое напряжение, которое у исправного датчика при включенном зажигании должно быть равным 0,996 В. При углубленной диагностике ДМРВ, необходимо измерить время релаксации — период, в течение которого датчик выходит в нулевое положение.
На рисунке 3 показана осциллограмма исправного датчика массового расхода воздуха. Нулевое напряжение на датчике в этом случае равно 0,996 В, а скорость выхода на рабочий диапазон 0,5 мс.
На рисунке 4 представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха — 1,130 В. Автомобиль с таким датчиком будет расходовать много топлива, и терять мощность.
Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на работающем двигателе при резко нажатой педали газа.
Чем ближе значение сигнала к 5 В, тем датчик имеет большую отдачу и двигатель будет эластичнее в работе (рис. 5).
Датчик положения дроссельной заслонки (ДПДЗ)
Датчик положения дроссельной заслонки легче всего проверить сканером. Но при плавающей неисправности, когда автомобиль движется рывками, лучше проверить сигнал датчика осциллографом.
Для этого сигнальный провод щупа подключают к выходу ДПДЗ и снимают сигнал, открывая дроссель, т. е. нажимая на педаль акселератора.
График осциллограммы должен иметь форму плавной кривой, на которой не должно быть резких перепадов, ступенек, скачков и т. п.
На рисунке 6 приведены осциллограммы сигналов с исправного и неисправного датчика положения дроссельной заслонки.
Проверка массы двигателя осциллографом
Осциллографом можно проверить качество соединения аккумуляторной батареи с потребителями. Так, плохую «массу» двигателя можно проверить, подсоединив отрицательный щуп с минусовой клеммой АКБ, а сигнальный — с двигателем или кузовом. Значительные помехи в графике сигнала свидетельствуют о плохой «массе».
На рисунке 7 приведен пример осциллограммы хорошего контакта клеммы АКБ с массой автомобиля.
Диагностика катушек зажигания с помощью осциллографа
Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части, в частности — может выдать ошибку по пропускам зажигания.
Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания требуется проверка осциллографом.
На рисунке 8 приведен пример характерного высоковольтного сигнала в системе зажигания при правильной работе всех элементов. По отклонениям от номинального графика осциллограммы можно судить о работоспособности всей высоковольтной цепи системы зажигания.
Любой неисправный элемент цепи — катушка, высоковольтный провод, свеча изменят характер графика осциллограммы, как показано на рисунках 9. 12.
Диагностика осциллографом топливных форсунок
Форсунка бензинового двигателя состоит из запорного клапана, который управляется электромагнитом (электромагнитной катушкой). Перемещение этого клапана в процессе работы форсунки можно проверить осциллографом.
В момент открывания и закрывания запорной иглы форсунки на осциллограмме должны прослеживаться характерные «бугорки» и колебания напряжения, что видно на рисунке 13.
Осциллограмма неисправно работающей форсунки приведена на рисунке 14.
На этом графике не прослеживаются какие-либо колебания напряжения в процессе движения запорной иглы (клапана), что свидетельствует о неисправности.
Диагностика форсунок с помощью осциллографа требуется при скрупулезном поиске неисправности в затруднительных случаях диагностирования.
В большинстве случаев достаточно сделать анализ эффективности работы цилиндров двигателя.
С помощью осциллографа можно оценить время нахождения форсунок в отрытом состоянии, а также некоторые другие параметры, которые важны при тщательном поиске неисправностей при неправильной работе системы питания.
Более подробный анализ работы форсунок приводится в инструкции по использованию осциллографа.
Что можно сделать с помощью осциллографа
В мастерской электронщика и электрика если не обязательно, то, по крайней мере, крайне желательно наличие осциллографа. Его используют на ряду с простыми измерительными приборами: амперметром, вольтметром, омметром, в конце концов мультиметром. Из этой статьи вы узнаете об осциллографе — что это такое и для чего он нужен.
Осциллограф — что это?
Все, кто работает с электричеством, знают, что напряжение измеряют вольтметром, а ток амперметром. Но эти приборы показывают только то значение тока, которое есть в момент измерений. Даже при измерении переменных по значению и знаку величин вы получаете какое-то усредненное по определенным алгоритмам или законам значение.
Но с помощью вольтметра можно следить за тем, как измеряется величина, правда, с погрешностями. У стрелочных приборов они обусловлены конструктивными особенностями, а у цифровых также, но добавляются еще и частота дискретизации и другие программные проблемы.
Но как проследить за быстроизменяющимся сигналом, у которого величины изменяются за тысячные и миллионные доли секунды?
Такие измерения крайне важны во многих сферах:
Во всех областях электронике;
При изучении параметров электрооборудования;
В диагностике и настройки систем автомобиля и прочих.
Для этого используют осциллографы и осциллографические пробники. Осциллограф — это тот же вольтметр, только на экране которого показывается не значение напряжения сигнала, а его форма и поведение. Форма сигнала отображается с привязкой к шкале проградуированной в Вольтах (вертикально) и секундах (горизонтально) — для подробного их изучения.
На картинке ниже вы видите примеры изображений на экране осциллографа, красным выделено сколько микросекунд в одном квадратике по горизонтали, а зеленым – сколько вольт по вертикали. Иными словами цена деления на изображении – 1В/дел и 10 мкс/дел.
Сразу стоит отметить, что, в основном, с помощью осциллографов изучают сигнал, который периодически повторяется. Сигналы изменяющиеся произвольным образом изучают с помощью осциллографа с функцией самописца.
Такой функцией обладают преимущественно цифровые осциллографы, но не все цифровые осциллографы умеют записывать осциллограммы в память. На фото ниже изображен аналоговый с электроннолучевой трубкой – он для таких задач не подходит.
Чтобы разобраться каким образом сигнал, который измеряется с периодом в доли секунды замирает на экране можно привести простой пример — стробоскоп. Если любой подвижный предмет периодически освещать коротковременными вспышками света, то в результате вы будете видеть конкретные его положения, как на фотографиях.
При этом, если освещать таким образом вращающийся с определенной скоростью предмет, то при условии, что частота вспышек совпадет со скоростью его вращения — вы будете видеть неподвижный предмет или определенную часть вращающегося предмета обращенного к вам одной и той же стороной в момент вспышки. Если частота вспышек не будет совпадать со скоростью вращения предмета, то вы будете видеть последовательность отдельных его участков в произвольном порядке.
Я встречал и сравнение на примере поезда с бесконечным числом одинаковых вагонов:
Если вспышки буду идти с частотой, совпадающей с частотой смены вагонов перед вами, то вам будет казаться, что каждый раз вы видите один и тот же неподвижный вагон перед собой.
Таким же образом работает и осциллограф — он отображает один и тот же участок периодического сигнала, в результате вы можете изучить особенности его изменения.
В пределах этой статьи мы не будем вдаваться в блоки, из которых он состоит, режимы работы, синхронизации и прочего, давайте рассмотрим что можно сделать с помощью осциллографа.
Осциллограф в электронике
Первое что приходит в голову — это электроника. Вы не можете наглядно увидеть, открылся ли транзистор, и как часто он это делает. Кроме того, при проектировании современных быстродействующих устройств, важно знать не только о самом факте срабатывания полупроводниковых ключей, но и о формах фронтов нарастания и затухания тока и напряжения.
Благодаря этому вы можете узнать насколько правильно подобран режим работы транзистора или другого компонента и о корректности работы радиоэлектронного устройства в целом.
Итак, при проектировании электроники нужно использовать осциллограф для наладки готового изделия и подбора конечных номиналов компонентов, что повышает его надежность.
Осциллограф в ремонте
Ремонт электроники это процесс поиска вышедшей из строя детали, который без необходимого набора инструментов сводится к поочередной замене элементов и узлов до доведения прибора до работоспособности. Иначе говоря — ремонт методом тыка.
Отдельные элементы, например транзисторы, резисторы, индуктивности и конденсаторы зачастую вы можете проверить с помощью мультиметра или универсального транзистор-тестера. С микросхемами дело обстоит иначе.
При ремонте блоков питания вы можете наглядно проконтролировать работу ШИМ-контролера — сердца импульсных преобразователей. Больше нет способов с помощью которых вы можете достоверно убедится в его исправности. Хотя в этом можно убедиться по косвенным признакам.
При ремонте устройств с микроконтроллерами можно проверить работу тактового генератора, наличие сигналов на всех пинах микроконтроллера.
При диагностике усилителей звука, можно увидеть в каком месте исчезает или искажается сигнал.
Ремонт автомобилей
Большинство неисправностей современных автомобилей типа: «не заводится», «провалы при разгоне», «плохо едет и глохнет», — связаны с проблемами в электрической части. Так как все двигателя, которые сейчас устанавливаются, инжекторные, если речь вести о газе или бензине, а если в двигатель работает на дизельном топливе, то у него наверняка стоят форсунки с электронным управлением. То же самое касается и системы зажигания.
Для функционирования систем впрыска и зажигания топлива, расчета моментов срабатывания форсунок и искрообразования, необходимо знать о положении коленчатого и распределительного валов двигателя. Поэтому автомобили оборудованы множеством датчиков.
Для диагностики всех этих систем используют как встроенные протоколы связи, считывают ошибки, так и мотортестеры — приборы которые могут и связываться с системой управления двигателя и работать в роли осциллографа.
Таким образом вы можете узнать о работе датчиков положения, проследить соответствие положения распределительного и коленчатого вала (фазы ГРМ).
С помощью специальных щупов — исправность работы системы зажигания, а по форме осциллограммы определить неисправность катушки, свечей, высоковольтных проводов и наличие импульса на катушки вообще.
Систему зарядки автомобиля можно проверить с помощью осциллографа. Так вы можете диагностировать неисправности диодного моста генератора, не снимая его с автомобиля.
Заключение
Осциллограф помогает увидеть форму сигнала и есть ли он вообще. Это важно и при разработке устройств и при их ремонте. Следует отметить, что можно обойтись и без него, но тогда вы потратите намного больше времени на диагностику прибора, а ремонт превратится в гадание на кофейной гуще.